Old Dominion University ODU Digital Commons

Engineering Management & Systems Engineering Theses & Dissertations

Engineering Management & Systems Engineering

Summer 2015

Systems Theory-Based Construct for Identifying Metasystem Pathologies for Complex System Governance

Polinpapilinho F. Katina Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds Part of the <u>Industrial Engineering Commons</u>, <u>Operational Research Commons</u>, and the <u>Systems</u> <u>Engineering Commons</u>

Recommended Citation

Katina, Polinpapilinho F.. "Systems Theory-Based Construct for Identifying Metasystem Pathologies for Complex System Governance" (2015). Doctor of Philosophy (PhD), dissertation, Engineering Management, Old Dominion University, DOI: 10.25777/9ej5-gc42

https://digitalcommons.odu.edu/emse_etds/95

This Dissertation is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

SYSTEMS THEORY-BASED CONSTRUCT FOR IDENTIFYING METASYSTEM

PATHOLOGIES FOR COMPLEX SYSTEM GOVERNANCE

by

Polinpapilinho F. Katina B.S. May 2009, Old Dominion University M.E. May 2011, Old Dominion University

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY August 2015

Approved by:

Charles B. Keating (Director)

Adrian V. Gheorghe (Member)

Patrick T. Hester (Member)

James Pyne (Member)

ABSTRACT

SYSTEMS THEORY-BASED CONSTRUCT FOR IDENTIFYING METASYSTEM PATHOLOGIES FOR COMPLEX SYSTEM GOVERNANCE

Polinpapilinho F. Katina Old Dominion University, 2015 Director: Dr. Charles B. Keating

The purpose of this research was to develop a systems theory-based construct for metasystem pathologies identification in support of the problem formulation phase of systems-based methodologies using an inductive research design. Problem formulation has been identified as one of the most critical stages in complex system development since it influences later stages in complex system understanding. In modern society where the operating landscape is characteristically ambiguous, mired by complexity, emergence, interdependence, and uncertainty, the concept of problem formulation is used to ensure right issues affecting complex systems surface and addressed to meet expected system performance and viability. In this research, this role of problem formulation is examined in systems-based methodologies in connection with systems theory. While the literature indicates the importance of problem formulation phase in systems-based methodologies, the conceptual foundations of systems theory that form the basis for 'systemic' thinking in these methodologies is not clearly inculcated into the problem formulation phase. This research addresses this gap by providing the necessary detailed discussion linking systems theory to problem formulation. The research focused on the lack of explicit use of systems theory in problem formulation and metasystemic issues of a higher logical order beyond single system of interest. A rigorous approach employing grounded theory method was used to analyze systems theory (laws, principles, and

theorems) in terms of problem formulation to develop a construct – *Metasystem Pathologies Identification* and derived systems theory-based pathologies (circumstances, conditions, factors, or patterns) that act to limit system performance. A case study was then undertaken to face validate the applicability of emerging systems-theory pathologies in an operational setting were possible utility were developed.

Fundamentally, this research presents a new approach to problem formulation where systemic thinking is at the foundation of identifying systemic issues affecting system performance. A significant promise for those interested in problem formulation is the inclusion of systems theory-based pathologies during problem formulation phase of systems-based approaches. For Elizabeth And the proposition that a great civilization is not conquered from without until it has destroyed itself from within - *Ariel Durant*

ACKNOWLEDGMENTS

I express my deepest appreciation to my dissertation advisor, Dr. Charles B. Keating, who has provided a rigorous and innovative environment enabling challenging and unsurpassed rewarding doctoral experience. Dr. Adrian V. Gheorghe, Dr. Patrick T. Hester, and Dr. James Pyne patiently provided time and expertise as members of the dissertation committee.

My appreciation is extended to fellow colleagues including Walt Akers, Dale Baugh, Dr. Joe Bradley, Dr. Behnido Calida, Jennifer Shauger, Joe Sisti, Drew Smith, Mike Smith, and David Walters.

Finally, my siblings, you deserve special recognition for your patience and insightful reminders, surely whoever thinks is standing securely should watch out so he/she doesn't fall.

PREFACE

This research was conducted to contribute to ongoing research efforts dedicated to understanding and developing solutions to contemporary issues in complex systems. Many disciplines in engineering management and systems engineering are moving towards systems theoretic approach in dealing with issues affecting systems prevalent in 21st century systems. As it is increasingly becoming apparent that complex systems do not operate in isolation, there is a need to understand such systems as interdependent and complex - being affected by a multitude of issues that can hinder expected performance and viability. This requires that we think systemically about these systems and the ways we use to address such systems. In conjunction with this thinking, there were two primary motivations for the current research: First, the researcher grew up in different countries and become keenly interested in how humans deal with problematic issues affecting livelihood. These issues include but not limited to energy and food, healthcare, transportation, manufacturing, terrorism, and natural disasters. These issues appear to be accelerating, without end insight, and challenging the very existence of human being. Convenient examples include the 1995 Kobe earthquake, the 1998 ice storm in Canada, the 9/11 terrorist attacks, the 2002/2003 severe acute respiratory syndrome outbreaks, the 2004 tsunami in South Asia, the 2005 devastation of New Orleans during Hurricane Katrina, the 2010 Deepwater Horizon oil spill, and the 2008 global financial crisis,. It most certainly appears that dealing with such issues, be it before, during, or afterwards, requires a holistic approach that might involve technical, human/social, organizational/managerial, policy/political elements as well as their interrelationships. As I have come to learn, *cause and effect* in these instances is not easy to articulate. Often,

there is a need to think holistically about these situations. Second, as I undertook my graduate studies in the Department of Engineering Management and Systems Engineering of the Frank Batten of Engineering and Technology, it become apparent that (1) the academic world has devoted time to develop numerous approaches, often referred to as systems-based methodologies, to confront complex issues affecting human wellbeing. However, (2) the availability of such approaches has not translated into systemic understanding complex systems as evidenced in frequency of occurrence and consequences of issues affecting society. I wanted to do research that has the potential to contribute to this area of research by focusing on utility of systemic thinking as espoused by systems theory.

Systems theory is taken as an alternative to reductionism which is closely aligned with the scientific method (holding that a complex organism is nothing but the sum of its parts, and therefore they can be reduced to constituent elements). A specific philosophical paradigm for systems theory, the need to holistically deal with entities as organizations and taking account of their interrelations rather than isolated parts, was a major influence. This is exemplified in the idea that concepts and insights of one discipline can be used to contribute other disciplines. This appears to be supported by development and application of principles and laws irrespective of their particular kind (Adams et al., 2014; Strijbos, 2010; von Bertalanffy, 1968). Specifically, it was importance for me to see how different concepts of systems theory could be used to address different aspects of complex systems. Ultimately, this research focused on the area of *problem formulation*. Consequently, the inductive nature of this research prompted a design as well as selection of grounded theory as a method for the execution of this research. In Chapter III, the research paradigm from which this research was conducted is further elaborated upon along the dimensions of methodology, epistemology, ontology, and human nature. The figure below captures the different elements of the inductive-subjective approach, compatible with the holistic thinking of systems theory, which was undertaken for this research.

Figure 1: A Research Paradigm for this Research, Adapted from Burrell & Morgan, 1979

When an inductive-subjective paradigm is undertaken in connection with methodology (means for investigating to obtain knowledge about world), there becomes a need to get first-hand knowledge about the world. This can be done through an attempt to understand how individuals create, modify, and interpret the world. Epistemologically (understanding and communicating knowledge), this research was undertaken from the perspective that knowledge is soft and subjective and therefore based on insights of a personal nature. This is necessary as people could hold different views on the same issue. Ontologically (the nature of reality), this research was undertaken from the perspective of nominalism where 'reality' becomes a construct dependent on the interpretation of the observer. In this thinking, reality includes accounting for individual consciousness where concepts provide major utility in structuring reality. Finally, the nature of human beings as voluntaristic was undertaken to suggest that humans are free-willed beings capable of creating their environment. This becomes apparent in how humans address issues affecting them, including different activities associated with *problem formulation*.

This view of the world has several implications that are addressed in this research in connection with the concept of *systems theory-based pathology* and the Metasystem Pathologies Identification construct for problem formulation in the systems-based methodologies that we use to intervene complex systems. Specifically, conclusions from the research indicate current utility of the research and a wide range of future research. In practice, this research provides practitioners with the means to integrate systems theory and its aspect of holistic thinking in problem formulation and hopefully a better grasp of reality for dealing with complexity.

TABLE OF CONTENTS

xi

PREFACE vi	i
LIST OF TABLESxii	i
LIST OF FIGURES xv	i
CHAPTER I: INTRODUCTION	1
1.1 STATEMENT OF THE PROBLEM	2
1.2 GENERAL BACKGROUND OF THE PROBLEM	4
1.3 PURPOSE OF THE STUDY	5
1.4 RESEARCH QUESTIONS	7
1.5 SIGNIFICANCE OF THE STUDY	9
1.6 LIMITATIONS AND DELIMITATIONS 11	1
1.7 ORGANIZATION OF THE DOCUMENT14	4
1.8 CHAPTER SUMMARY 16	5
CHAPTER II: LITERATURE REVIEW17	7
2.1 SYNTHESIS OF RELEVANT LITERATURE 18	8
2.2 LITERATURE CRITIQUE	2
2.3 RESEARCH SETTING FOR METASYSTEM PATHOLOGIES CONSTRUCT 97	7
2.4 CHAPTER SUMMARY 100	0
CHAPTER III: PERSPECTIVE OF THE RESEARCH	2
3.1 RESEARCH PARADIGMS 102	3
3.2 GROUNDED THEORY METHOD 117	7
3.3 CASE STUDY METHOD 128	8
3.4 MITIGATING CRITICISMS 135	5
3.5 CHAPTER SUMMARY 148	8
CHAPTER IV: RESEARCH DESIGN	9
4.1 MULTI-PHASE RESEARCH DESIGN 150	0
4.2 DETAILED PHASES OF RESEARCH 15:	5
4.3 CHAPTER SUMMARY 199	9
CHAPTER V: RESEARCH RESULTS	1
5.1 CONSTRUCT OF METASYSTEM PATHOLOGY IDENTIFICATION [MPI] 203	3
5.2 MPI CONSTRUCT FACE VALIDATION	5
5.3 CHAPTER SUMMARY	1
CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS	2
6.1 RESEARCH CONCLUSIONS	3

6.2 RESEARH IMPLICATIONS	249
6.3 FUTURE RESEARCH DIRECTIONS	252
6.4 CHAPTER SUMMARY	259
REFERENCES	261
APPENCICES	
A: CODEBOOK FOR SYSTEMS THEORY	
B: CATEGORIES FOR SYSTEMS THEORY-BASED PATHOLOGIES	321
C: GUIDELINES FOR THE OUTSIDE EXPERT	404
D: PATHOLOGIES STATEMENTS FOR ASSESSMENT	407
E: THE RAW RESULTS OF ASSEMENT IN THE UNIT OF ANALYSIS	414
F: AN EXAMPLE OF APPLICATION OF SYSTEMS THEORY-BASED PATHOLOGIES	419
VITA	422

LIST OF TABLES

Table	Page
1: A Cotemporary View of Systems Theory	
2: Varying Perspectives on Complexity	
3: Characteristics of Complex Systems	
4: Characteristics of Systems of Systems	
5: SoS Problem Landscape	
6: Differentiating Linear and Complex Systems	
7: System-based Methodologies and Classification	
8: Overview Description of Systems-based Methodologies	51
9: Breadths of Concepts Related to Problem Formulation	
10: The Role of Problem Formulation in Systems-based Methodologies	66
11: System Status Pathologies	
12: Expanded VSM Pathologies	
13: Summary of VSM Functions	86
14: Systems of Systems VSM-derived Pathologies	88
15: Research Gaps Related to Metasystem Pathologies	
16: Qualitative Research Methods and Fit Selection	110
17: Criteria for Selection of Research Method	130
18: Two Dimensions of Canons of Science and Their Indicators	137
19: Distinction between Qualitative and Quantitative Research	141
20: Research Design Consideration Issues	
21: Basic Information Pertinent to this Research Design	145

Table Page
22: Measures Undertaken to Improve Research Trustworthiness 147
23: The Three Major Phases of Research 156
24: Notes on Research Questions 160
25: Criteria for Inclusion of Literature Data
26: Criteria for Inclusion/Exclusion of Systems Theory Concepts 166
27: Criteria for Outside Expert Qualifications 171
28: A List of Common Concepts Systems Theory Not Used in Analysis 174
29: Activities of Grounded Theory Method 175
30: Properties of Initial Codebook for System Theory 177
31: Criteria for Reviewing Systems Theory-based Pathologies
32: A Seven-Point Scale for Assessing P _E
33: A Seven-Point Scale for Assessing P _C
34: Qualifications for an Acceptable Unit of Analysis
35: A Range of Possible Reponses to the P _E Assessment
36: A Range of Possible Responses to the P _C Assessment
37: An Initial Research Perspective on Metasystem Pathologies
38: Major Themes for Categorizing Systems Theory-Based Pathologies
39: Young's (1964) Categories of Concepts of Systems Theory 214
40: Seven Axioms of Concepts of Systems Theory
41: Attributes and Dimensions for Systemic Dynamic Metasystem Pathology 220
42: Attributes and Dimensions for Systemic Goal Metasystem Pathology 222
43: Attributes and Dimensions for Systemic Information Metasystem Pathology 223

44: Attributes and Dimensions for Systemic Process Metasystem Pathology 224
45: Attributes and Dimensions for Systemic Regulatory Metasystem Pathology 225
46: Attributes and Dimensions for Systemic Resources Metasystem Pathology 227
47: Attributes and Dimensions for Systemic Structure Metasystem Pathology 228
48: Attributes and Dimensions for Systemic Understanding Metasystem Pathology 229
49: Overall Numbers of the Survey Results
50: Reflections for the Case Application
51: Research Perspective for Metasystem Pathologies Identification Construct
52: A Comprehensive Listing of Codes and Categories Supporting Systems Theory-
Based Pathologies
53: Outside Expert Qualifications
54: A Partial Table Used in Capturing Expert Feedback
55: Pathology Survey Statements

Page

LIST OF FIGURES

Figure Page	e
1: A Research Paradigm for this Research in	X
2: Organization Diagram for Chapter I	2
3: Research Purpose, Objectives, and Questions	9
4: Organization of Dissertation Chapters	5
5: Organization Diagram for Chapter II	7
6: Three Major Streams of Research	8
7: Literature Review Threads	0
8: Developmental cycles of systems science	5
9: A Logic of System Function-based Pathologies	2
10: The Logic of Metasystem in Relation to a Governed System	4
11: An Emerging Construct for Systems Theory Metasystem Function-based	
Pathologies	2
12: Organization Diagram for Chapter III	3
13: Two Major Paradigms of Research 10.	5
14: Research Perspectives and their Dimensions	7
15: Dimensions of Canons of Science	6
16: Organization Diagram for Chapter IV 15	0
17: Overall Research Phases 15.	3
18: A Partial Data Accounting Log for 'System Pathology' 15	8
19: Activities of Grounded Theory Method16	3
20: An Example Codebook Page for Principle of Emergence	8

Figure Page	
21: An Example of a Memo Taken to Capture Insights Related to the Concept of	
Transcendence170	
22: Results from Systems Experts	
23: A Screenshot of QSR International's NVivo 10 Used in this Research	
24: The Interrelated Activities of GTM Undertaken in this Research	
25: Activities of Case Design Approach	
26: An Illustration of Intersection of P_E and P_C for this Research	
27: Major Regions for Pathological Conditions in this Research	
28: A Participant Perspective Assessing six Different Pathologies	
29: An Example of Six Participant Perspectives on the Same Pathology	
30: An Example of What Appears as Diverging Perspectives on the Same Pathology . 199	
31: Organization Diagram for Chapter V	
32: Partial Data Text, Codes, and Category for a Systems Theory Concept of	
Complementarity	
33: A Partial Evolution of Codes, Categories, and Statement of Systems Theory-Based	
Pathologies	
34: Fifteen Groupings for Systems Theory-based Pathologies	
35: A Graphical Representation of Emerging Metasystem Pathologies	
36: A Model for Supporting Deviation from Systems Theory	
37: A Graphical Representation of the Construct for Metasystem Pathologies	
Identification234	

Figure	Page
38: Three Regions and Percentages of Composite Pathology Profile for the Unit of	
Analysis	238
39: Percentages of Composite by Grid for the Unit of Analysis	238
40: Different Perspective on the Pathology of Complementarity	239
41: Chapter VI Layout Diagram	242

CHAPTER I: INTRODUCTION

The purpose of this chapter is to establish the foundation for research to address a significant deficiency in the body of knowledge concerning initial phases of systemsbased methodologies intended to provide understanding of the problem domain. Descriptors such as 'formulating the mess' (Ackoff, 1974; 1981a; Majone & Quade, 1980; Mason & Mitroff, 1981; Mitroff & Emshoff, 1979), 'problem articulation' (Wellington, 1887), 'problem bounding' (Checkland, 1993), 'problem context' (Crownover, 2005; Jackson, 1991; 2003), 'problem definition' (Dery, 1984; Blanchard & Fabrycky, 2006; Gibson, Scherer, & Gibson, 2007; Warfield, 1976), 'problem framing' (Fairhurst & Sarr, 1996; Keating, Peterson, & Rabadi, 2003a; Adams & Meyers, 2011), 'problem identification' (Majone & Quade, 1980), 'problem setting' (Majone & Quade, 1980; Miser & Quade, 1988a), and 'problem situation' (Miser & Quade, 1988b) represent different ways to which this critical phase of inquiry is described. However, there is a paucity of rigorous research related to the identification of systemic issues in the initial phase, 'problem formulation', of systems-based approaches to address complex systems and their derivative problems. This research is directed towards development of a system theoretic construct for identification of systemic pathologies, endemic to complex systems. The organization of Chapter I is depicted in Figure 2 below.

Figure 2: Organization Diagram for Chapter I

1.1 STATEMENT OF THE PROBLEM

21st century complex systems, such as healthcare systems, energy systems, transportation systems, security systems, operate under conditions of ambiguity, complexity, emergence, interdependence, and uncertainty (Flood & Carson, 1993; Katina, Pinto, Bradley, & Hester, 2014b; Skyttner, 2005). In the face of these conditions, systems-based methodologies (e.g., critical systems heuristics, interactive planning, sociotechnical systems, soft systems methodology, systems of systems engineering methodology, systems analysis, systems engineering, and the Viable Systems Model) have emerged as preferred approaches to understanding complex systems and bringing about change (Jackson, 2003). Problem formulation is a key theme among these systemsbased approaches. It provides an initial entry into the problem space and is a fundamental aspect of the analysis critical to eventual formulation of complex situation solutions (Dery, 1984; Fairhurst & Sarr, 1996; Flood & Carson, 1993; Jackson, 2003; Keating, Sousa-Poza, & Mun, 2004; Kimball, 1957; Mingers & Rosenhead, 2004; Mintzberg, Raisinghani & Théorêt, 1976; Mitroff & Featheringham, 1974; Mosteller, 1948). However, while problem formulation is discussed in the literature, there are two principal criticisms: (1) there is a lack of explicit use of systems theory grounding problem formulation phases, and (2) an absence of focus on problem formulation at the metasystem level. For present purposes, metasystem is synthesized from the literature (Beer, 1979, 1981, 1985; Djavanshir, Khorramshahgol, & Novitzki, 2009; Djavanshir, Alavizadeh, & Tarokh, 2012; Krippendorff, 1986; Keating & Katina, 2012; Ríos, 2012) as a governing structure that provides coordination and integration of subsystems in complex systems and systems of systems to achieve overarching goals, functions, and missions beyond those capable of individual constituent subsystems. The resulting state of knowledge leaves a significant deficiency in addressing problem formulation at the metasystem level in system-based approaches for complex systems.

The following sections of this chapter introduce research background information on the issue of problem formulation at the metasystem level, purpose of the study, research questions, significance of the research, limitations and delimitations, and organization of the document. The chapter concludes with organization of the dissertation and a chapter summary.

1.2 GENERAL BACKGROUND OF THE PROBLEM

Understanding and bringing about change in complex systems and systems of systems requires that we properly formulate the problem. According to Mintzberg et al. (1976) problem formulation "is probably the single most important routine, since it determines in large part...the subsequent course of action" (Mintzberg et al., 1976, p. 276). It is also referred to as "the most critical stage" in policy problem analysis (Dery, 1984, p. 3). Similarly, Keating et al. (2004) refer to problem formulation as "the most critical phase...since errors in this phase will be amplified at later phases and throughout the cycling of the SoSE [systems of systems engineering] effort" (Keating et al., 2004, p. 10).

Moreover, the conditions under which complex systems operate might make it difficult for the analyst to "understand the object of such pursuits" (Dery, 1984, p. 14) and thus one runs the risk of developing what Dery (1984, p. 29) referred to as "pseudo-solutions" to "pseudo-problems" without a proper frame of reference. The importance of problem formulation in complex systems cannot be overstated. There is need to pay attention to diagnosis rather than "focus[ing] on the selection routines" (Mintzberg et al., 1976, p. 274), understanding "why problem situations occur" (Jackson, 2003, p. 204), and avoiding solving the wrong problem, otherwise known as Type III error (Adams & Hester, 2012; Kimball, 1957; Mitroff & Featheringham, 1974; Mosteller, 1948). The foundation of this research provides a rigorous exploration of the systemic underpinnings

supporting these thoughts and ideas regarding the importance of problem formulation in efforts involving complex system understanding, design, (re)design, and transformation. 1.3 PURPOSE OF THE STUDY

The purpose of this research is to develop a systems-theory based construct for metasystem pathologies identification for problem formulation in systems-based approaches using an inductive approach of grounded theory. Glaser and Strauss (1967) first articulated the grounded theory method as an approach for developing theoretical constructs for a broad range of data. Details on the applicability and utility of the grounded theory method for this research are provided in Chapter III.

Typically, a complex system is composed of interconnected parts that, as a whole, exhibit one or more properties not obvious from the well understood properties of the individual parts (Joslyn & Rocha, 2000). As such, complex systems exhibit one or more of the following attributes: "1) significant interaction; 2) high number (of parts, degrees of freedom or interactions); 3) nonlinearity; 4) broken symmetry; and 5) nonholonomic constraints" (Yates, 1978, R201).

The concepts of system-based approach, problem formulation, and metasystem pathology are described in detail in Chapter II; however, in order to provide an essential foundation in relationship to the purpose of this research, it is necessary to elaborate on the use of these terms with respect to the present research. For the purpose of this study, a system-based approach is taken as a systematic methodological approach, grounded in theoretical underpinnings based in systems, enabling exploration of complex systems and their constituent problems. A methodology, according to Jackson (1991), is a set of "procedures for gaining knowledge about a systems and structured processes involved in intervening in and changing systems" (p. 134). Problem formulation is the initial phase or activity in gaining knowledge and understanding and transformation of problematic situation into a more clearly defined problem (Dery, 1984; Keating et al., 2004; Mintzberg et al., 1976). "This process usually takes not only extensive communication between the analysts and those responsible for deciding what to do about the situation but also a great deal of disciplined effort by both parties; it also requires inquiry into, and agreement on, the goals, constraints, and limitations on what is to be investigated" (Miser & Quade, 1988b, p. 22-23). While a metasystem is a logical higher order governing structure that provides coordination and integration of subsystems to achieve overarching capabilities beyond those of individual subsystems (Beer, 1979, 1981, 1985; Djavanshir et al., 2009; 2012; Krippendorff, 1986; Keating & Katina, 2012; Ríos, 2012), a pathology is defined as "a circumstance, condition, factor, or pattern that acts to limit system performance, or lessen system viability, such that the likelihood of a system achieving performance expectations is reduced (Keating & Katina, 2012, p. 253). Hence, a metasystem pathology is a pathology that acts to limit performance or lessen viability of a system at the metasystem level.

This research addresses the gap in systems body of knowledge concerning: (1) the limited explicit use of systems theory during problem formulation and (2) the lack of focus on pathologies at the metasystem level during problem formulation phases in systems-based approaches for complex systems. The approach is driven by developing a system theoretic construct for establishing and articulating metasystem pathologies in support of problem formulation phases for system-based methodologies. As used in the purpose statement, a construct is a set of related concepts forming a building block

enabling understanding of situations (Bunge, 1974; Krippendorff, 1986; Linsky, 2012). This construct is referred to as the Metasystem Pathologies Identification (MPI) to support the problem formulation phase of system-based methodologies.

To meet purpose of this research, there is a need to further articulate how the research will be conducted and what the research will achieve. The following section elaborates two central questions that serve to focus the research effort.

1.4 RESEARCH QUESTIONS

The foundation of this research rests on systems theory and concepts related to the problem formulation phase in systems-based approaches related to studying complex systems. This research is specifically focused on two research questions:

1. How can systems theory be used to generate a metasystem pathologies identification construct to support problem formulation phase of systemsbased methodologies?

2. What results from the deployment of the metasystem pathologies identification construct in an operational setting?

As used above, the term systems theory refers to a "unified group of specific propositions which are brought together to aid in understanding systems, thereby invoking improved explanatory power and interpretation with major implications for systems practitioners" (Adams, Hester, Bradley, Meyers, & Keating, 2014, p. 113). These propositions have basis in different fields of science and have been used to explain and understand system phenomena (Adams et al. 2014; Angier, 2007). This research seeks to extend the use of systems propositions to the problem formulation phase of systemsbased methodologies. The first question is focused on establishing a relationship between propositions of systems theory and problem formulation for complex systems with emphasis on metasystem pathologies identification. The thrust of this question is to develop a construct for metasystem pathologies identification, based in systems theory, with applicability to the problem formulation phases of systems-based methodologies for complex systems and their constituent problems. Grounded theory method is used discover such potential relationships, interconnections, and interdependencies that systems theory provides for metasystem pathologies. For Research Question 1, the output is a theory (i.e., construct) of Metasystem Pathologies Identification (MPI) and its supportive systems theory-based pathologies.

In the second research question, the developed construct is applied to an operational system. The thrust of this research question is to establish a 'face' validation for the construct through application to an operational system. A single operational system serves as the focus for investigation using a case study method (Yin, 2009). Figure 3 depicts research questions, objectives, and the purpose of this research.

Figure 3: Research Purpose, Objectives, and Questions

As a result of addressing these two questions, this research makes substantial contributions to the systems body of knowledge. First, it extends the use of propositions of systems theory to problem formulation phases of systems-based methodologies. Second, this research is concerned with the use of systems propositions in problem formulation phases of systems-based methodologies, focused at the metasystem level. Thus, this research is concerned with metasystem pathologies as an essential element of problem formulation in complex systems.

1.5 SIGNIFICANCE OF THE STUDY

The importance of systems-based methodologies in understanding and bringing about change in complex systems is established in literature and elaborated further in Chapter II. Central to systems-based methodologies is the concept of the problem formulation phase and its critical role in the analysis of complex systems. Therefore, the basis of this research in bringing a rigorously developed construct for metasystem pathologies identification in complex systems makes significant contributions to systems body of knowledge by:

- Contributing to research methodologies in the systems engineering and related fields of engineering management using grounded theory. Grounded theory method "is the most widely used qualitative interpretative framework in the social sciences today" (Denzin, 1994, p. 508) including sociology, psychology, information science, education, and healthcare (Bryant, 2002; Locke, 2001). Thus, applying grounded theory in systems domain provides opportunities for an enhanced capacity to conduct inductive research into the systemic issues endemic to the domains related to systems, including such domains as engineering management, systems engineering, and systems of systems engineering.
- Adding to the existing body of knowledge in systems theory, system-based methodologies, and problem formulation by developing a construct drawing upon the propositions of systems theory and projecting them to the complex system problem formulation phase in system-based methodologies.
- Providing a basis for including metasystem pathologies in the analysis of complex systems, thereby enhancing the problem formulation phase of systems-based methodologies.
- Making a significant contribution to the practice related to problem formulation phases that must be undertaken as an initial activity in virtually any complex systems-based inquiry. Foundations for development of a new set of technologies, methods, tools, and techniques to support Metasystem Pathologies Identification will be informed from the research.

This section has discussed significance of this research to methodology, theory, and practice. Limitations and delimitations of this research are the basis for the following section.

1.6 LIMITATIONS AND DELIMITATIONS

This section presents the limitations (restrictions on the generalizability and projection of research results) and delimitations (established boundary conditions) guiding this research. Together, these two aspects provide the scope of this research with respect to how the findings and implications resulting from the execution of the research design can be interpreted.

1.6.1 Limitations

There are three limitations of this research. Detailed discussion on research limitations, steps taken for mitigations, and implications with regards to grounded theory and the case study method are discussed in detail in Chapter III. However, to frame the research, it is necessary to explore limitations related to, credibility, confirmability, and generalizability.

Concerning credibility (the degree to which the research is 'believable' and trustworthy from the perspective of the participants), this research takes into account several steps including use of well-established research methods and triangulation in the local case application (Glaser & Strauss, 1967; Lincoln & Guba, 1985). However, this provides a limitation for extensibility of the research beyond the case application. This research uses a grounded theory method to enhance problem formulation phase through pathology articulation based on systems theory. Steps taken to explain the relationship between systems theory and problem formulation and their implications are elaborated upon in Chapter II. A single real world complex system was investigated using case study method (Yin, 2009) to examine the degree to which the theoretical construct can transfer to an operational setting. The judgment of the ability to transfer to the operational setting must be established from the perspective of the participants with respect to the trustworthiness of the results of application.

Confirmability of the research establishes a limitation of the research concerning availability of data and the procedures upon which the research findings are based. In qualitative research, "confirmability builds on audit trails...and involves the use of field notes, memos, a field diary, and process and personal notes, and a reflexive journal" (Denzin, 1994, p. 513). The use of readily available research methods (i.e., grounded theory and case study) combined with accessible data (i.e., databases, books, and journal articles) and QSR International's NVivo 10 software package for coding provide the basis for confirmability of the research. Steps undertaken to ensure confirmability of the case study are elaborated upon in Chapters III and IV.

Generalizability (the ability to project the results of the research beyond the research application), there is an inclination for concepts of metasystem pathologies to be generalizable beyond the research. However, the nature of qualitative research design and the use of grounded theory and case study methods provide a list of challenges for generalizing beyond the scope of the study. Douglas (2003) insists:

The explanatory power of grounded theory is to develop predictive ability – to explain what may happen ...the wider the theoretical sampling frame develops the more embedded the theory becomes; and general theory generation becomes achievable...transferability to other research areas depends on the degree of similarity between the original situation and the situation to which it is transferred. (p. 51) Hence, while the construct linking systems theory to problem formulation at the metasystem level might be generalized, the results of application of the construct will vary based on the context of different complex situations (Patton, 2002; Yin, 2009). The generalizability of the theoretical construct is held with the validity provided by the grounded theory method. However, the generalizability of the application is limited by the application to the specific nature of the context surrounding the case study. Therefore, a limitation for application, based on the case study method, must be considered. 1.6.2 Delimitations

This section discusses four delimitations of this research. These delimitations provide the boundary of this research: problem formulation, construct for metasystem pathologies, systems theory, metasystem pathologies.

Problem formulation – the area of focus for this research is limited to support for the problem formulation phase as it relates to systems-based approaches to complex system understanding. As such, the research is not about an end-to-end analysis of complex systems as expected in application of a system-based methodology employed to understand, devise change, transformation and evaluation of complex systems. However, as indicated in Chapter II, metasystem pathologies can be considered an essential part of the problem formulation phase for any systems-based endeavor.

Construct for metasystem pathologies – the major part of this research is the development of a construct linking systems theory to metasystem pathologies within the context of the problem formulation phase of systems-based methodologies. This construct is best described as conceptual model for problem formulation in metasystems and therefore it does not represent a model of any real world problem formulation.

However, it can be applied in any real world situation related to problem formulation at the metasystem level from a systems theory perspective. The results of applying the construct are unique to the case study and, as an application significance, are bounded to the specifics of the case study situation.

Systems theory – this research focuses on propositions of systems theory and how such propositions can be used to inform development of problem formulation phase of systems-based methodologies and articulation of pathologies. This research is not about developing new propositions; rather it only uses existing systems propositions to develop ideas about metasystem pathologies identification and pathologies using grounded theory approach.

Metasystem pathologies - this research focused on pathologies at the metasystem level of complex systems and thus concepts of governance, integration, and coordination beyond functions, goals, and missions of individual systems (Beer, 1979, 1981, 1985; Djavanshir et al., 2009; 2012; Krippendorff, 1986; Keating & Katina, 2012; Ríos, 2012) take precedence. As such, the concept of pathologies is limited to understanding circumstances, conditions, factors, or patterns that may act to limit expected performance within the scope of problem formulation phase for systems-based methodologies. The metasystem view presented in this research is directly drawn from management cybernetic (Beer, 1979).

1.7 ORGANIZATION OF THE DOCUMENT

This section introduces the organization of the rest of this document. In Chapter II, critique of literature pertinent to problem formulation is established along with a research setting for need and the development of the Metasystem Pathologies Identification (MPI) construct. Chapter III describes research perspective including theoretical underpinnings of grounded theory and case study methods as an inductive research approaches necessary for development of the construct. This discussion includes applicability and key concerns regarding the use of grounded theory and case study methods. Chapter IV describes the research methodology and lays out the research design, research phases, data collection, and the analysis process with respect to grounded theory and case study methods. Chapter V provides an in-depth discussion of the research results including detailed relationships between systems theory and problem formulation, the emerging theory of metasystem pathologies identification, the application and the results of the developed construct in real system. The research concludes with Chapter VI, which provides conclusions, recommendations for application of the results, and future research. Figure 4 depicts the flow of chapters and the remainder of this dissertation.

1.8 CHAPTER SUMMARY

This chapter provides the foundation of the research developed to address a significant deficiency in systems body of knowledge. It provides a statement of research pertinent to problem formulation in 21st century complex systems, background information on the importance of problem formulation, and the purpose of study as related to use of systems theory in the problem formulation phase of systems-based methodologies. Furthermore, this chapter articulates two research questions, offers significance of the study in relation to contributions, and lays-out the study's limitations and delimitations along with the organization of the rest of the document.

The following chapter, Chapter II, is a literature review on systems body of knowledge aimed at illustrating the gap of using systems theory in problem formulation phases of systems-based approaches.

CHAPTER II: LITERATURE REVIEW

Chapter I demonstrated the role of problem formulation in systems-based approaches when dealing with 21st century systems operating under the conditions of ambiguity, complexity, emergence, interdependence, and uncertainty. This chapter reviews the literature relevant to problem formulation. A synthesis of the literature is developed across systems-based perspectives to obtain threads and concepts pertinent to the research idea of problem formulation at the metasystem level. This chapter also articulates shortcomings pertaining to use of systems theory in identification of metasystem issues. This is followed by a research setting which frames this current research and how the proposed research addresses gaps in the systems body of knowledge. Figure 5 is provided to represent the organization of this chapter.

Figure 5: Organization Diagram for Chapter II

2.1 SYNTHESIS OF RELEVANT LITERATURE

The literature review includes the three major areas of systems theory, systemsbased methodologies, and problem formulation, as depicted in Figure 6. The literature on systems theory forms the body of literature relevant to topics of systems, complex systems, systems of systems, and systems-based methodological approaches. Literature on system-based methodologies discusses different approaches used to intervene in 21st century system problems. The area of problem formulation discusses the role and importance of proper problem formulation in the eventual success of a system. In order to sufficiently establish the concept of metasystem pathologies within the systems theory body of knowledge, it was necessary to include topics on laws, principles, and theorems that can be used to understand and explain system behavior and thus enhance an analyst's ability to intervene in systems. Moreover, the topic of metasystem is included in this research since the research is concerned with understanding problem formulation at the *metasystem* level.

Figure 6: Three Major Streams of Research
The streams of research that emerged from the literature review serve as the basis for Figure 7, which are inclusive of issues related to complex systems, complex problem formulation, system pathologies, systems of systems, metasystem, systems theory, and systems-based approaches.

This research contributes to complex problem formulation at the metasystem level as indicated by the red-dotted line connecting the concepts of 'problem formulation' and 'metasystem' in Figure 7. This contribution is directly rooted to laws, principles of systems theory (Adams et al., 2014) which is the basis from understanding complex systems (Hammond, 2002; von Bertalanffy, 1968; Warfield, 1976).

2.1.1 Systems Theory

Systems theory does not have a single common or accepted definition. The term is commonly attributed to Anatol Rapoport, Norbert Weiner, Karl Ludwig von Bertalanffy and Ross Ashby (Klir, 1972; Laszlo & Krippner, 1998) and emerged in the 1940s as an attempt to provide an alternative to reductionism. Reductionism is closely aligned with the scientific method, which holds that a complex organism is nothing but the sum of its parts, and therefore they can be reduced to constituent elements (Hammond, 2002; von Bertalanffy, 1968). As doubts regarding the classical scientific approach of isolating constituent elements became clear in different fields, researchers became more interested in notions of 'organization' of wholes rather than parts (von Bertalanffy, 1972). They kept re-discovering the Aristotelian dictum of the whole being greater than the sum of its parts in biology, psychology, sociology, and physics (von Bertalanffy, 1968; Laszlo, 1996).

The argument for systems theory started in 1920's when von Bertalanffy (1972) stated:

Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination or parts and processes. (p. 410)

The proposed solution to this issue in biology was to "discover the laws of biological systems (at all levels of organization)" (von Bertalanffy, 1972, p. 410) to gain knowledge about the complete picture that includes coordination of parts and processes. In terms of systems and understanding, the purpose of systems theory emerged as a platform for uniting different disciplines through inductive discovery of models, principles and laws that help explain 'system' phenomena (Heylighen & Joslyn, 1992; Laszlo & Krippner, 1998; Laszlo, 1996; von Bertalanffy, 1950).

According to Laszlo (1996), systems theory is related to ideas of 'wholes,' 'having irreducible properties,' 'environment,' 'centralization,' 'self-organization,' and 'holarchy of nature.' Fundamentally, these propositions are meant to grasp the ideas of organization, relationships, and interrelations among all systems (von Bertalanffy, 1972). Additionally, these propositions not only attempted to link different and diverse systems; they also suggest that there is commonality among different disciplines, which could be found in systems theory and this could be leveraged to enhance our understanding of the world. This is illustrated in Kenneth Boulding's letter to von Bertalanffy (1968):

I seem to have come to much the same conclusion as you have reached, though approaching it from the direction of economics and the social sciences rather than from biology - that there is a body of what I have been calling 'general empirical theory,' or 'general system theory' in your excellent terminology, which is of wide applicability in many different disciplines. I am sure there are many people all over the world who have come to essentially the same position that we have, but we are widely scattered and do not know each other, so difficult is it to cross the boundaries of the disciplines. (p. 14)

The founders of systems theory foresaw this as a necessary and sufficient platform for transcending the boundaries of the classical sciences (e.g., physics, biology, psychology, social science) (von Bertalanffy, 1968; 1972). Thus, the notion of systems theory was not limited to living organisms. It transcended machines, physicochemicals, organizations, and social systems (Stichweh, 2011).

The foundation of the Society for General Systems Research (since renamed, International Society for the Systems Sciences) in 1954 provides further clarification on the need of systems theory. The original bylaws stated that the aims of general systems theory:

- 1. To investigate the isomorphy of concepts, laws, and models from various fields, and to help in useful transfers from one field to another
- 2. To encourage development of adequate theoretical models in the fields which lack them
- 3. To minimize the duplication of theoretical efforts in different fields
- 4. To promote the unity of science of through improving communications among specialists. (Adams et al., 2014; Hammond, 2002; von Bertalanffy, 1972)

In postulating general systems theory, von Bertalanffy's objective was to bridge the gap

that exists in different disciplines via the discovery of principles and laws common across

disciplines (von Bertalanffy, 1968):

...there exist models, principles, and laws that apply to generalized systems or their subclasses, irrespective of their particular kind, the nature of their component elements, and the relationships or 'forces' between them. It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal principles applying to systems in general.

The meaning of this discipline can be circumscribed as follows. Physics is concerned with systems of different levels of generality. It extends from rather special systems, such as those applied by the engineer in the construction of a bridge or of a machine; to special laws of physical disciplines, such as mechanics or optics; to laws of great generality, such as the principles of thermodynamics that apply to systems of intrinsically different nature, mechanic, caloric, chemical, or whatever. Nothing prescribes that we have to end with systems traditionally treated in physics. Rather, we can ask for principles applying to systems in general, irrespective of whether they are of physical, biological, or sociological nature. If we pose this question and conveniently define the concept of system, we find that models, principles, and laws exist which apply to generalized systems irrespective of their particular kind, elements, and the 'forces' involved.

A consequence of the existence of general system properties is the appearance of structural similarities or isomorphisms in different fields. There are correspondences in the principles that govern the behavior of entities that are, intrinsically, widely different. (pp. 32-33)

The problem, according to Laszlo (1996), was that classical science was

promoting bubbles of knowledge without a sense on holistic understanding. In order to

promote holistic thinking, proponents of system theory suggested that there is a need for

a discipline that can bridge the gap created by compartmentalization of reductionist

thinking. In the case of understanding and knowledge generation, Laszlo (1996)

suggested that compartmentalization emerged out of the belief that the "human mind has

a limited capacity for storing and processing information [hence]...individual people can work in teams, and what one of them knows can be complemented by the knowledge of the others. Hence knowledge can proceed in depth without thereby losing breadth" (p. 2). Later, Laszlo (1996) notes that compartmentalization created "closed bubbles in their own right. [Where] specialists in one field can communicate with one another if they share a specialty, but experience difficulty when their interests do not coincide" (Laszlo, 1996, p. 2). The outcome is "the unfortunate consequence of such specialty barriers is that knowledge, instead of being pursued in depth and integrated in breadth, is pursued in depth in isolation" (Laszlo, 1996, p. 2). This applies that a specialist may be able to "tell how one cell or organ reacts to one particular kind of stimulant, or how one body reacts to one particular kind or force" (Laszlo, 1996, p. 3). However, Laszlo (1996) argues that the specialist cannot tell us "how a number of different things act together when exposed to a number of different influences at the same time" (p. 3). Expressed differently by von Bertalanffy (1972):

This method [scientific method] worked admirably well insofar as observed events were apt to be split into isolable causal chains, that is, relations between two or a few variables. It was at the root of the enormous success of physics and the consequent technology. But questions of many-variable problems always remained. (p. 409)

The traditional scientific method and its reductionist mindset, notes Hammond

(2002) is:

...rooted in the mechanistic worldview we inherited from the scientific revolution of the seventeenth century...we needed a more ecological or systemic world, based on an understanding of our fundamental interconnectedness and interdependence, with each other and with all of life. (p. 430)

Rather than relying on Newtonian science which "looked upon the physical

universe as an exquisitely designed giant mechanism, obeying elegant deterministic laws

of motion" (Laszlo, 1996, p. 7), systems theorists seek to "concentrate on structure on all levels of magnitude and complexity, and fit detail into its general framework. They discern relationships and situations, not atomic facts and events" (Lazlo, 1996, p. 9).

Consequently, it was shown that there was a significant difference between

systems and reductionist approaches. Laszlo (1996) notes that to speak of systems is not a

means to reduce entities into a general term referred to as 'systems.' The systems

approach is not a simplification since (Laszlo, 1996):

...traditional reductionism sought to find the commonality underlying diversity in reference to a shared **substance**, such as material atoms, contemporary systems theory, seeks to find common features in terms of shared aspects of **organization**. (p. 17)

Similarly, Capra (1997) states:

They [systems] arise from the 'organizing relations' of the parts - that is, from a configuration of ordered relationships that is characteristic of that particular class of organisms, or systems. Systemic properties are destroyed when a system is dissected into isolated elements. (p. 36)

It thus appears that the premise of systems theory is related to the idea that

problems we are confronting in the 21st century cannot be understood or solved in

isolation. Nonetheless, the 'general systems' idea received great criticism and was

labeled as a field of truisms and analogies. von Bertalanffy (1968) notes:

The proposal of system theory was received incredulously as fantastic or presumptuous. Either – it was argued - it was trivial because the co-called isomorphisms were merely examples of the truism that mathematics can be applied to all sorts of things, and it therefore carried no more weight than the 'discovery' that 2 + 2 = 4 holds true for apples, dollars, and galaxies alike: or it was false and misleading because superficial analogies - as in the famous simile of society as an 'organism' – camouflage actual differences and so lead to wrong and even morally objectionable conclusions. Or, again, it was philosophically and methodologically unsound because the alleged 'irreducibility' of higher levels to lower ones tended to impede analytical research whose success was obvious in various fields such as in the reduction of chemistry to physical principles, or of life phenomena to molecular biology. (p. 14)

To suggest that systems theory was trivial and potentially harmful to already created knowledge, von Bertalanffy (1968) argued that it would be a gross misunderstanding of what systems theory stood for: "...attempting scientific interpretation and theory where previously there was none, and higher generality than that in the special sciences. General system theory responded to a secret trend in various disciplines" (von Bertalanffy, 1968, p. 14). Moreover, the examination of three different but related aspects of systems theory: systems science, systems technology, and systems philosophy, helps to further distinguish the field of general systems theory (Strijbos, 2010; von Bertalanffy, 1972).

Systems science – this is the "scientific exploration and theory of 'systems' in various sciences (e.g., physics, biology, psychology, social sciences), and general systems theory as the doctrine of principles applying to all (or defined subclasses of) systems" (von Bertalanffy, 1972, p. 414). This is the aspect of systems theory deals with knowledge of the connected 'wholes' - complexity as opposed detailed and isolated systems. Laszlo (1996) expounds on this by suggesting:

If this is the case, to have an adequate grasp of reality we must look at things as systems, with properties and structures of their own. Systems of various kinds can then be compared, their relationships within still larger systems defined, and a general context established. If we are to understand what we are, and what we are faced with in the social and the natural world, evolving a general theory of systems is imperative. (p. 10)

Although this aspect of general systems theory was developed in mathematical terms emphasizing isomorphic relationships (von Bertalanffy, 1968), Hammond (2002) established that "much of his [von Bertalanffy's] writing reflects a deeper concern with the mechanistic and reductionist orientation of then current models in biology and psychology" (Hammond, 2002, p. 436). This is supported by the work of von Bertalanffy

(1972) who later stated that "classical science in its various disciplines, such as chemistry, biology, psychology, or the social sciences, tried to isolate the elements of the observed universes...We have learned, however, that for an understanding not only the elements but their interactions as well are required – say, the interplay of enzymes in a cell, the interactions of many conscious and unconscious processes in the personality, the structure and the dynamics of social systems, and so forth" (pp. 414-415).

A general systems theory has yet to emerge (Adams, 2012; Adams et al., 2014; Gaines, 1977; Monod, 1974). However, the aspects of systems theory describing isomorphic concepts, laws, principles, and theorems applicable to different systems are becoming increasingly evident (Adams et al., 2014; Clemson, 1984; Flood & Carson, 1993; Stichweh, 2011; Strijbos, 2010; von Bertalanffy, 1968; Weinberg, 1975). Since there is no one field of systems, systems theory can only provide a set of concepts, laws, principles, and theorems from different discipline to describe different system structures and their behaviors. Hence, there is bound to be different articulations of systems theory as espoused by Adams et al. (2014). Nonetheless, Stichweh (2011) suggests that systems theory:

...is a science which has the comparative study of systems as its object...[Furthermore]...Such comparative research program for heterogeneous types of systems presupposes a highly general concept of systems, for which numerous features have been proposed: the interdependency of the parts of a system; the reference of any structure and process in a system to the environments of the system; equilibrium and adaptedness and continuous re-adaptations to environmental demands as core elements of the understanding of a system; selforganization of a system as the principal way it responds to external intervention; complexity as trigger mechanism for system-formation and as the form which describes the internal network structures of connectedness among system elements. (p. 2579) Additionally, Strijbos (2010) suggests that systems theory is concerned with how "some of the concepts and insights of one discipline contribute to the problems and theories of another" (p. 453). In this instance, Strijbos' work supports the notion that systems theory is about how different theoretical perspectives can be transported from one field to another to address a wide range of issues in distinctive disciplines. This was the case in control engineering which had roots in cybernetics (Jackson, 2003; Strijbos, 2010; von Bertalanffy, 1968). It is from this perspective that this research adopts the following formal definition of systems theory (Adams et al., 2014):

...a unified group of specific propositions which are brought together to aid in understanding systems, thereby invoking improved explanatory power and interpretation with major implications for systems practitioners. (p. 113)

Drawing on six major sectors and 42 individual fields of science, Adams et al., (2014,), using axiomatic methods, proposed 30 constituent propositions - inclusive of laws, principles, and theorems - as a collective of systems theory clustered around seven (7) axioms of centrality, context, design, goal, information, operational, and viability. Table 1 is drawn to indicate Adams et al.'s (2014) axioms and propositions of systems theory. Therefore, the systems science aspect of systems theory challenges researchers to use systems theory (i.e., laws, principles, and theorems) for holistically investigating and understanding systems. In this research, an expanded view of systems theory is provided in Chapter IV.

	Table 1: A Cotemporary V	iew of Systems Theory, Adapted from Adams et al., 2014
Axiom	Associated principles and	Description of principles
	proponents	
Centrality	Communication	In communication, the amount of information is defined, in the simplest
	(Shannon, 1948a; 1948b)	cases, to be measured by the logarithm of the number of available choices.
_		Because most choices are binary, the unit of information is the <i>bit</i> , or
_		binary digit
	Control	The process by means of which a whole entity retains its identity and/or
_	(Checkland, 1993)	performance under changing circumstances
	Emergence	Whole entities exhibit properties which are meaningful only when
	(Aristotle, 2002; Checkland,	attributed to the whole, not its parts – e.g. the smell of ammonia. Every
	1993)	model of systems exhibits properties as a whole entity which derive from it
		component activities and their structure, but cannot be reduced to them
	Hierarchy	Entities meaningfully treated a wholes are built up of smaller entities
	(Pattee, 1973; Checkland,	which are themselves wholes and so on. In a hierarchy, emergent
	1993)	properties denote the levels
Context	Complementarity	Any two different perspectives or models about a system will reveal truths
	(Bohr, 1928; Mehra, 1987)	about that systems are neither entirely independent nor entirely compatible
	Darkness	Each element in the system is ignorant of the behavior of the system as a
	(Ashby, 1956; Cilliers, 1998)	whole, it responds only to information that is available to it locally. This
		point is vitally important. If each element 'knew' what was happening to
		the system as a whole, all of the complexity would have to be present in
		that element
	Holism	The whole is not something additional to the part: it is the parts in a
	(Smuts, 1926)	definitive structural arrangement and with mutual activities that constitute
		the whole. The structure and the activities differ in character according to
		the stage of development of the whole; but the whole is just this specific
		structure of parts with their appropriate activities and functions

of al 2014 n Ada nted fro Ada Ę 4 f Cu Vie t

29

cont.)
~
<u>e</u>
D.
ຸຕ

Design	Minimum critical	This principle has two aspects, negative and positive. The negative aspect
	specification	of the principles states that no more should be specified than is absolutely
	(Cherns, 1976; 1987)	essential for design; the positive aspect of the principle requires that we
		identify what is essential for design
	Pareto	In any large complex system, eighty percent of the outputs or objectives
	(Pareto, 1897)	will be produced by only twenty percent of the system means
	Requisite Parsimony	Human short-term brain activity (memory) is incapable of dealing or
	(Miller, 1956; Simon, 1974;	recalling more than seven plus or minus two items
	Warfield, 1995)	
	Requisite Saliency	The factors that will be considered in a system design are seldom of equal
	(Boulding, 1966)	importance. Instead, there is an underlying logic awaiting discovery in each
		system design that will reveal the saliency of these factors
Goal	Equifinality	If a steady state is reached in an open system, it is independent of the initial
	(von Bertalanffy, 1950)	conditions, and determined only by the system parameters (i.e. rates of
		reaction and transport). Hence, taking different paths, the same final state
		may be reached from different initial conditions
. –	Multifinality	Radically different end states are possible from the same initial conditions
_	(Buckley, 1967)	
_	Purposive Behavior	Purposeful behavior is meant to denote that the act or behavior may be
_	(Rosenblueth, Wiener, &	interpreted as directed to the attainment of a goal to a final condition in
_	Bigelow, 1943)	which the behaving object reaches a definite correlation in time or in space
		with respect to another object or event
	Satisficing	The decision-making process whereby one chooses an option that is, while
	(Simon, 1955; 1956)	perhaps not the best, good enough
	Viability	A function of balance must be maintained along two dimensions: (1)
	(Beer, 1979)	autonomy of subsystem versus integration and (2) stability versus
		adaptation

Table 1 (cont.)

Information	Redundancy of Potential	Effective action is achieved by an adequate concatenation of information.
	Command	In other words, power resides where information resides
1	(McCulloch, 1965)	
	Information Redundancy	Errors in information transmission can be protected against, to any level of
	(Shannon & Weaver, 1949)	confidence required, by increasing the redundancy in the messages
Operational	Dynamic Equilibrium	For a system to be in a state of equilibrium, all subsystems must be in a
	(D'Alembert, 1743)	floating (not steady or stable) state characterized by invisible movements
		and preparedness for change equilibrium. All subsystems being in a state of
		equilibrium, the system must be in equilibrium
	Homeorhesis	The concept encompassing dynamical systems which return to a trajectory,
	(Waddington, 1957; 1968)	Even if disturbed in development. In homeorhesis, systems return to a
		particular path of a trajectory while in homeostasis systems which return to
\$		a particular state
	Homeostasis	The property of an open system to regulate its internal environment so as to
	(Cannon, 1929)	maintain a stable condition, by means of multiple dynamic equilibrium
		adjustments controlled by interrelated regulation feedback mechanisms
	Redundancy	These are the means of increasing both the safety and reliability of systems
	(Pahl, Beitz, Feldhusen, &	by providing superfluous or excess resources usually in form of backup or
	Grote, 2011)	fail-safe
	Relaxation Time	Systems stability is possible only if the system's relation time is shorter
	(Iberall, 1972; Holling, 1996)	than the mean time between disturbances
	Self-organization	Complex systems organize themselves; they exhibit emergence global
	(Ashby, 1947)	structure and behavior out of interactions of local parts
	Sub-optimization	If each subsystem, regarded separately, is made to operate with maximum
	(Hitch, 1953)	efficiency, the system as a whole will not operate with utmost efficiency

\sim
Ē.
5
્
6
Ĩ
, a

Viability	Circular Causality	Any effect becomes a causative factor for future effects, influencing them
	(Foerster, Mead, & Teuber,	in a manner particularly subtle, variable, flexible, and of an endless number
_	1953)	of possibilities
	Feedback	All purposeful behavior may be considered to require negative feedback. If
	(Wiener, 1948)	a goal is to be attained, some signals from the goal are necessary at some
		time to direct the behavior
	Recursion	If a viable system contains a viable system, then the organizational
	(Beer, 1979)	structure must be recursive; in a recursive organizational structure, any
		viable system contains, and is contained in, a viable system
	Requisite Hierarchy	The weaker in average the regulatory abilities are and the larger the
	(Aulin-Ahmavaara, 1979)	uncertainties of available regulators, the more hierarchy is needed in the
		organization of regulation and control to attain the same result, if at all
		possible
	Requisite Variety	The control achieved by a given regulatory sub-system over a given system
	(Ashby, 1956; Flood & Carson,	is limited by : 1) the variety of the regulator and 2) the channel capacity
	1993)	between the regulator and the system

These propositions not only provide means to bridge the isolation problem between disciplines, they provide ability to think and intervene in different systems (Adams et al., 2014; Jackson, 2003), which is in accord with the bylaws of the *International Society for the Systems Sciences*. Furthermore, Adams et al. (2014) suggest that the seven axioms of systems theory form a basic construct for defining any system. A construct in this case is a set of related concepts forming a building block enabling understanding of situations (Bunge, 1974; Krippendorff, 1986; Linsky, 2012). Since a system can be defined as "a set of interrelated components working together toward some common objective or purpose" (Blanchard & Fabrycky, 2006, p. 2), the proposed set of axioms and their constituent laws, principles, and theorems might be used to describe and understand systems.

Systems Technology – this is the aspect of systems theory that deals with "problems arising in modern technology and society, including both 'hardware' (control technology, automation, computerization, etc.) and 'software' (application of systems concepts and theory in social, ecological, economical, etc., problems)" (von Bertalanffy. 1972, p. 420). As the need for the science of 'systems' became increasingly apparent, there was also a need to address emerging world issues related to pollution, economies, health, politics, and international conflicts (Strijbos, 2010; von Bertalanffy, 1972; Warfield, 1976). The argument is that the current state of affairs characterized by increasing levels of ambiguity, complexity, emergence, interdependence, and uncertainty require a holistic (systems) and interdisciplinary approach that complements reductionism of classical sciences (Hammond, 2002; von Bertalanffy, 1972). Systems analysis (Atthill, 1975; Digby, 1989; Gibson et al. 2007), systems engineering (Blanchard & Fabrycky, 2006; INCOSE, 2011), operational research (Churchman, Ackoff & Arnoff, 1957), systems dynamics (Forrester, 1961; Sterman, 2000), organizational cybernetics (Beer, 1979; 1981; 1985), strategic assumption surfacing and testing (Mason & Mitroff, 1981; Mitroff & Emshoff, 1979), interactive planning (Ackoff, 1974; 1981a; 1981b; 1999), soft systems methodology (Checkland, 1990; Wilson, 1984), systems of systems engineering methodology (Adams & Keating 2009, 2011; Keating et al., 2004), critical systems heuristics (Ulrich, 1983; 1987), organizational learning (Argyris & Schön, 1978; 1996), sociotechnical systems (Trist & Bamforth, 1951; Cherns, 1976), and total systems intervention (Flood, 1995; Flood & Jackson, 1991; Jackson, 1991) are examples of the holistic approaches necessary to address current vexing issues from a systems theory perspective. Usually selected on the basis of context of problematic situation and purpose of analysis (Crownover, 2005; Jackson, 2003), these methodological approaches were first used to gain knowledge and intervene in behaviors of complex systems at the beginning of the 20th century.

Consequently, the systems technology element of systems theory is concerned with developing and applying unique sets of systemic approaches to enable understanding, problem solving, and bring about positive change in society (Hieronymi, 2013). These approaches are uniquely distinct in comparison to the scientific approach in that rather than being piecemeal, they are holistic since they embrace the tenets of systems thinking. Figure 8 is drawn to depict the mutual influence of four developmental cycles associated with systems approaches.

Figure 8: Developmental cycles of systems science, adapted from Flood & Carson, 1993, p. 4

Systems philosophy – a third element of systems theory is systems philosophy and deals with philosophical issues related to paradigm change within which systems theory supposedly operates. Three elements epitomize this aspect of systems theory. First is *systems ontology*, which deals with how an observer views reality. Two opposing extremes of realism and nominalism exist along ontological aspect of reality (Flood & Carson, 1993; Burrell & Morgan, 1979; Katina et al., 2014a). The realism view of the world suggest that reality is "external to the individual imposing itself on individual consciousness; it is a given 'out there,' and is of an objective nature" while reality, [under nominalism], "is a product of individual consciousness, a product of one's own mind or of individual cognition" (Flood & Carson, 1993, p. 247). While there is certainly a spectrum along the continuum between nominalism and realism, the polarizing nature of this distinction provides for different views of reality and the corresponding acceptability of different worldviews for systems.

The second element of systems philosophy is *systems epistemology*. It deals with how we obtain and communicate of knowledge (Burrell & Morgan, 1979; Flood & Carson, 1993; Katina et al., 2014a). Two opposing extremes of the spectrum of epistemological thought are positivism (i.e., knowledge is hard, real, and capable of being transmitted in a tangible form) and anti-positivism (i.e., knowledge is soft, more subjective, spiritual, or even transcendental – based on experience, insight, and essentially of a persona nature) (Flood & Carson, 1993). Again, there is certainly a spectrum between these diametrically opposed philosophical perspectives concerning epistemology. However, differences in epistemological orientation help to define the 'appropriate' underlying perspective of philosophical orientation for systems theory.

The third aspect of systems philosophy has to do with the *nature of man* (Burrell & Morgan, 1979; Flood & Carson, 1993; Katina et al., 2014a). von Bertalanffy noted that "If reality is a hierarchy of organized wholes, the image of man will be different from what is in a world of physical particles...Rather, the world of values...is something very 'real'" (von Bertalanffy, 1972, p. 423). The two opposing extremes of *determinism* and *voluntarism* exist along continuum of systems philosophy with respect to the viewpoint for the nature of man in systems theory. Determinism describes the view that humans are mechanistic, determined by situations in the external world; human beings and their experiences are products of their environment; they are conditioned by external circumstance (Flood & Carson, 1993). On the other hand, voluntarism suggests that

humans have a creative role and have free will; human beings create their environment (Flood & Carson, 1993).

Flood and Carson (1993) have argued that since the scientific approach embraces elements of reductionism, setting hypotheses, designs in artificial situations, a limited number of variables, experimentation, and with knowledge accruement, the approach is ontology-realist, epistemology-positivist and is largely influenced by a high degree of determinism regarding nature of humans. Conversely, systems theory at the philosophical level promotes ontology-nominalist, epistemology-anti-positivist and is concerned with 'systems' as they are influenced by human values (Burrell & Morgan, 1979; Flood & Carson, 1993; von Bertalanffy, 1972).

Therefore, while it appears that systems theory is mostly interested in developing systems laws, principles, and theorems that govern complex systems, there is also emphasis on holistic thinking supported by ontology, epistemology, and consideration of nature of man and his values. Arguably, it is from this need to understand the totality of systems that the ideas of complex systems and systems of systems have emerged.

2.1.2 Complex Systems

Firstly, it is important to note that complexity, as noted by Gharajedaghi (1999) and Kovacic, Sousa-Poza, & Keating (2007), is a feature related to human perception and understanding. This is especially the case when an analyst might desire to move a complex system from one state to another with the goal of meeting needs of members of the system in question. In this regard, the perception, understanding, and actions of the analyst are influenced by complexity (Gharajedaghi, 1999). Previously, Blanchard and Fabrycky (2006) suggested that a system is a set of interacting components having welldefined purpose. However, Moses (2002) suggests that the purpose of the system might be poorly understood based on the behavior of the system. This begins to point to complexity in systems such that the composed interconnected parts as a whole exhibit one or more behaviors not obvious from the well-understood properties of the individual parts (Joslyn & Rocha, 2000). Table 2 is drawn from discovery of the multitude of perspectives that permeates complex systems. While this listing is not presented as complete, it demonstrated the diversity in perspectives concerning the nature, role, and utility for complexity.

Authors	Complexity perspective	Implications for understanding
Sussman, 2005	A system is complex when it	It is difficult to predict overall
	is composed of a group of	emergent behavior even if the
	related units (subsystems), for	behaviors of subsystems are
	which the degree and nature	predictable. Thus, small changes
	of the relationships is	may produce large changes in
	imperfectly known	behavior
Rechtin & Maier,	A complex system has a set of	To address problems in such
2002	different elements so	systems, a different logic of
	connected or related as to	problem-solving technique is
	perform a <i>unique function</i> not	requires at different level of
	performable by the elements	abstraction
	alone	
Coveney &	Scientific complexity is related	An inherent behavior of complex
Highfield, 1996	to the behavior of	units as opposed to a – for example -
	macroscopic collections of	complexity of a mathematical
	units given the <i>capability</i> to	operations (i.e., number of
	potentially evolve over time	mathematical operations needed to
		solve a problem)
Levy, 2000	Complexity theory along with	There is a good chance for short-
	chaos theory attempt to	term predictability. However, long-
	accommodate the	term planning is impossible due to
	unpredictability nature of non-	occurrence of unexpected changes
	linear dynamic systems with a	occur. Must be innovative and
	sense of underlying order and	adaptive
	structure	
Brewer &	Forensic complexity is "a	Comprehensibility and
Gneorgne, 2011	multidisciplinary approach to	understanding are key to reducing
	the study of comprehension in	complexity. Reality and its
	<i>complex situations</i> in order to	representations cannot be separated
	(Prover & Choorabo 2011 -	or knowledge
	(Brewer & Gneorgne, 2011, p.	or knowledge
1	(331)	

Table 2: Varying Perspectives on Complexity

Gharajedaghi's (1999) organized simplicity, chaotic simplicity, organized complexity, and chaotic complexity is complemented by MacLennan's (2007) complex adaptive systems and Khalil's (2001) nonlinear systems. Consequently, Guckenheimer and Ottino's (2008) four distinctive properties of complex systems (Table 3) provide further clarification of complex system landscape suggesting that the analyst should be interested in 'wholes' rather than parts. It is these characterises that form the basis for

'systems' approaches in dealing with the issues facing modern society.

Characteristic of complex systems	Description of characteristic
Many interacting parts	Internal structure of complex systems consists of many interacting components forming a network of subsystems over time and space. Subsystems could be complex in their own right
Emergent behavior	Complex systems exhibit emergent system behavior that arise from the interaction of subsystems (these could themselves be complex) but is not evident from analysis of individual subsystems
Adaptation and change	Complex systems can change their behavior based on environmental changes to continue providing for their functionality
Systems uncertainty	Complex systems exhibit the state of being unfixed, unknown, and undetermined such that they are best described as non-ergodic (not returning to a previous state) and non-monotonic (varying trajectory) conditions

Table 3: Characteristics of Complex Systems

2.1.3 Systems of Systems

An emerging subset of complex systems and therefore an area of interest for systems theory is systems of systems (SoS) and its problem landscape (Barot et al., 2012; DeLaurentis & Callaway, 2004; Eusgeld, Nan, and Dietz, 2011; Keating, et al. 2003b; Keating & Katina, 2011; 2012; USAF SAB, 2005). In addition to exhibiting the general characteristics of complex systems, SoS exhibit special characteristics of operational independence, managerial independence, evolutionary development, emergent behavior, and geographical distribution (Keating et al., 2003b; Maier, 1996). Table 4 is drawn to depict characteristics of systems of systems.

SoS characteristic	Description of characteristic
Operational	Disaggregating systems of systems into constituent systems does
independence of	not render the constituent system inoperable. Rather, each
systems	constituent system has the ability to operate independently since
	constituent systems are also complex within their own rights
	(Maier, 1996)
Managerial	The constituent systems comprising a systems of systems can be
independence of	separately acquired and are independently managed (Maier, 1996)
systems	
Evolutionary	Systems of systems evolve over time. Consequently, component
development	systems capabilities may be added, removed, or modified as
	needs change and experience is gained (Maier, 1996)
Emergent behaviour	Systems of systems have emergent capabilities and properties that
	do not reside in the component systems (Maier, 1996).
	Consequently, managing such systems requires holistic thinking
Geographical	Systems of systems are comprised of constituent complex systems
distribution of	geographically distributed with the ability to readily exchange
systems	information (Maier, 1996). Consequently, managing such systems
	requires understanding the whole

Table 4: Characteristics of Systems of Systems

The nature of systems of systems (Keating & Katina, 2011; 2012; Keating et al.

2003b) provides for articulation of the following attributes persistent in the domain

(Keating & Katina, 2011):

- 1. proliferation of information intensive systems and technologies that have not necessarily been developed for the integrated SoS missions they are being conscripted to perform
- 2. multiple stakeholders with potentially incompatible worldviews and divergent objectives, often politically driven
- 3. scarce and dynamically shifting resources that create a source of uncertainty and potential instabilities in mission support
- 4. constantly shifting conditions and emergent understanding of problems and context that make stable requirements life cycle driven approaches unrealistic
- 5. technology advancements that outpace the capabilities, and potential compatibility, of infrastructures necessary to support their development, integration, maintenance, and evolution
- 6. urgency in demands for responsive action and solution development to alleviate mission shortfalls
- 7. the abdication of long term thinking in response to immediate perceived operational needs rendering traditional forms of long range planning virtually innocuous

8. increasing complexities and uncertainties that bring to question the ability of traditional systematic approaches, based in assumptions of stability, to effectively deal with SoS problems. (pp. 235-236)

Clearly, the systems of systems problem landscape must emphasize holistic

approaches. This is further amplified by Sousa-Poza, Kovacic, and Keating (2008)

research on seven (7) characteristics of SoS problem domain. Table 5 is drawn to depict

the characteristics of SoS problem landscape.

SoS problem	Domain characteristic description	
domain space		
Holistic problem	The nature of the systems of systems problem space requires	
space	consideration of the technical, human/social, managerial,	
	organizational, policy, and political dimensions (Sousa-Poza et al., 2008)	
Ambiguity	The difficulty in clearly demarking problem boundaries, as well	
	as their interpretation, is an inherent characteristic of the systems	
	of systems problem domain (Sousa-Poza et al., 2008)	
Uncertainty	Systems of systems problems are not tightly bound, flexing as	
	additional knowledge of the situation is developed (Sousa-Poza et	
	al., 2008)	
Highly contextual	Consideration of circumstances, conditions, factors, and patterns	
	that give meaning and purposes to systems of systems (Sousa-	
	Poza et al., 2008)	
Emergence	Systems of systems behavioural and structural patterns, their	
	interpretations, knowledge, understanding and conditions are in	
	constant flux (Sousa-Poza et al., 2008)	
Non-ergodicity	Systems of systems exhibit phenomenological conditions of	
	having no defined states or discernible transitions between states	
	(Sousa-Poza et al., 2008)	
Non-monotonicity	Systems of systems exhibit the condition in which increases in	
	knowledge are not reciprocated by increases in understanding.	
	Under this condition, decisions are defeasible or tentative (Sousa-	
	Poza et al., 2008)	

Table 5:	SoS	Problem	Landscape
	~ ~ ~		

Ideally, the integration of complex autonomous systems, their resources, and capabilities should enable new functionality, performance, and missions that exceed functions, performance, or mission of the constituent systems (Adams & Meyers, 2011, USAF SAB, 2005). This idea is consistent with 'systems' approaches where the concern is at the system level rather than the parts – constituent systems.

The concepts of complex systems and systems of systems are purposefully selected to illustrate three key issues for this research:

First, the study of the properties of complex systems and systems of systems suggest that the need to understand the multitude of factors that influence decisionmaking in terms of systems. The decisions of actors in such systems are influenced by "political, cultural, ethical and similar factors...[that make] it difficult for the problem solver to fully understand the 'rationale' behind decisions made by actors in the systems" (Jackson & Keys, 1984, p. 476).

Second, to intervene and bring about change in real-world systems, it is necessary to understand nature of systems in which systems theory is intended for application. This provides a starting point for understanding – a fundamental element of complex systems relevant to systems theory (Kovacic et al., 2007):

a situation in which, for any number of reasons, the level of understanding that an observer(s) has of the situation is extremely low at any point in time, and knowledge claims are bound to have a high probability of being erroneous. (p. 58)

In such a case, it becomes necessary to include the observer, the system being observed system, and their interactions within analysis efforts. This is especially necessary since "the activity of observing [done by an analyst]…has some influence on the observed system [system under study]" (Clemson, 1984, p. 21). In support of this

concept, Flood and Carson (1993) posit: "The nature of perceived reality is inevitably conditioned by our nature as observing systems" (p. 35). Therefore, understanding complexity using a 'systems' approach significantly differs from a deductive problem solving approach in terms of irreducibility, transiency, and perception (Padilla, Sousa-Posa, Tejada, & Kovacic, 2007). Table 6 is drawn from discovery of the multitude of distinguishing between complex and linear systems (Jackson, 1991; Perrow, 1972; 1999; Schoderbek, Schoderbek, & Kefalas, 1985).

Linear (non-complex) Systems	Complex Systems	
Equipment spread out	Tight spacing of equipment	
Segregated production steps	Proximate productive steps	
Common-mode connections limited to	Many common-mode connections of the	
power supply and the environment	components not in production sequence	
Failed components are easily isolated	Limited isolation of failed components	
Specializations increases understanding of	Specialization of personnel limits awareness of	
elements	systems interdependencies	
Extensive substitution of supplies and	Limited substitutions of supplies and materials	
materials		
Few unfamiliar or unintended feedback	Unfamiliar or unintended feedback loops	
loops		
Control parameters are few, direct, and	Many control parameters with potential	
segregated	interactions	
Direct, online information sources	Indirect or inferential information sources	
Extensive understanding of all processes	Limited understanding of processes (i.e.,	
(i.e., step-by-step processes)	transformational in nature)	

Table 6: Differentiating Linear and Complex Systems

Unlike the traditional view of the world, complex and systems of systems must be addressed at a different logical level. We must account for irreducibility of systems, transient nature of knowledge about such systems, and inclusion of people's perception of reality. Third, systems theory provides a conceptual foundation for dealing with, intervening and bringing about change in real-world complex systems and systems of systems at the holistic perspective (Adams et al. 2014; Flood & Carson, 1993; Jackson, 1991; 2003; Warfield, 1976). It provides the underlying theoretical foundation for dealing with entities as 'systems,' and therefore must be used to support systems ideas including understanding of structures, behaviors, and relationships. Moreover, systems theory can be used as a means to intervene with the objective of bringing about desirable output (i.e., enhanced capability) beyond those of individual systems. Interestingly, there is no shortage of systems-based methodological approaches supporting complex system understanding, intervention, and bringing about change in 21st century systems. Systemsbased methodologies are the subject of the following section.

2.1.4 Systems-Based Approaches

The problem space associated with complex systems and systems of systems evokes ideas postulated in systems theory were the emphasis is placed on understanding the whole in terms of structure and behavior of the system rather than parts (Laszlo, 1996; Hammond, 2002; Flood & Carson, 1993; Jackson, 1991; 2003; von Bertalanffy, 1968). Consequently, system practitioners and theorists have developed methodologies that can be used to understand complex systems structure and behaviors.

It is generally agreed that there is a need for robust methodologies capable of holistically and systemically analyzing behaviors of systems under the current conditions within which they must function. These conditions are marked by high levels of ambiguity, complexity, emergence, interdependence, and uncertainty (Conrad & Gheorghe, 2011; Jackson, 1991, 2003; Keating, 2014; Keating et al., 2014). In such cases, a methodology includes theoretical underpinnings and is used to "refer to methods for exploring and gaining knowledge about systems" (Jackson, 1991, p. 3). Consistent with Checkland's (1993) perspective on a methodology, Jackson (1991) suggests that a methodology is:

...procedures for gaining knowledge about systems and structured processes involved in intervening in and changing systems. (p. 134)

Hence, methodologies might be used to investigate and obtain knowledge about our 21st century world systems. Furthermore, it is important to establish that methodological approaches might be categorized into two opposing extremes of idiographic and nomothetic based on Burrell and Morgan (1979) and amplifications as suggested by Flood and Carson (1993). An idiographic view of a methodology supports subjectivity in research of complex systems as suggested by Flood and Carson (1993):

...the principal concern is to understand the way an individual creates, modifies, and interprets the world. The experiences are seen as unique and particular to the individual rather than general and universal. An external reality is questioned. An emphasis is placed on the relativistic nature of the world to such an extent that it may be perceived as not amenable to study using the ground rules of the natural sciences. Understanding can be obtained only by acquiring firsthand knowledge of the subject under investigation. (p. 248)

The opposing view of methodology - nomothetic - supports the traditional

scientific method and its reductionist approach to addressing problematic issues

(Churchman, 1968; 1971). This suggests that a nomothetic view of methodology (Flood

& Carson, 1993) subscribes to:

...analyze relationships and regularities between the elements of which the world is composed...identification of the elements and the way relationships can be expressed. The methodological issues are concepts themselves, their measurement, and identification of underlying themes. In essence, there is search for universal laws that govern the reality that is being observed. Methodologies are based on systematic process and technique. (pp. 247-248) It would thus appear that systems-based methodologies are idiographic in nature since they adhere to the notions put forward by Flood and Carson (1993). This is supported by systems theory ideas of complementarity (Bohr, 1928; Mehra, 1987) and complexity (Gharajedaghi, 1999; Sousa-Poza et al., 2008) in understanding and bringing about change in complex systems and systems of systems. Furthermore, review of systems literature indicates that there is no shortage of systems-based methodologies that might be used to gain knowledge and intervene in behaviors of systems. Table 7 is drawn from systems literature suggesting two major categories of systems-based methodologies. A hard systems approach, according to Jackson (1991):

...assume that problems are set in mechanical-unitary contexts. Hard methodologies take it as a given that it is relatively easy to establish clear objectives for the system in which the problem resides – so context must be unitary. They then try to represent that system in a quantitative model that simulates its performance under different operational conditions – something only possible if the system is simple and the context mechanical. (p. 30)

Exemplars of hard systems approaches include systems analysis, systems engineering and operations research (Checkland, 1978; Jackson, 1991; 2000). These methodologies share "the assumption that the problem task they tackle is to select an efficient means of achieving a known and defined end" (Checkland, 1978, p. 73).

However, since "it is often difficult to define precise objectives on which all stakeholders can agree" especially in complex systems (Jackson, 2003, p. 20), soft systems thinking approaches emerged to accommodate multiple and sometimes conflicting values, beliefs, and worldviews that are prevalent in complex systems. To support a needed change, "the solution was to make subjectivity central, working with a variety of world views during the methodological process" (Jackson, 2003, p. 22). This is the logic that underlies the second category of systems-based approaches. While the aim of a 'hard' systems approach is to optimize the system based on a known goal, the 'soft'

systems approaches recognize that (Jackson, 2003):

...the vast numbers of relevant variables and the myriads of interactions make this [optimization] an impossible requirement. The solution...[is] to identify those key mechanisms or structures that govern the behavior of the elements or subsystems...aspects that lie behind system viability and performance. (p. 21)

In the exemplars of 'soft' systems approaches, we can add systems of systems

engineering methodology insofar as it embraces systems ideas (Adams & Keating, 2011)

and yet rejects the idea of optimization (Hester, 2012).

Classification	Systems-based Methodology	Primary Proponents
Hard Systems	Systems Analysis	Atthill (1975); Digby (1989);
Thinking	·	Gibson et al. (2007)
	Systems Engineering	INCOSE (2011); Blanchard &
		Fabrycky (2006)
	Operational Research	Churchman, Ackoff & Arnoff
		(1957)
Soft Systems	Systems Dynamics	Forrester (1961); Sterman (2000)
Thinking	Organizational Cybernetics	Beer (1979; 1981; 1985)
	Strategic Assumption	Mitroff & Emshoff (1979); Mason
	Surfacing and Testing	& Mitroff (1981)
	Interactive Planning	Ackoff (1974; 1981a; 1981b;
	_	1999)
	Soft Systems Methodology	Checkland (2000); Wilson (1984)
	Systems of Systems	Adams & Keating (2009; 2011);
	Engineering Methodology	Keating et al., (2004)
	Critical Systems Heuristics	Ulrich (1983; 1987)
	Organizational Learning	Argyris & Schön (1978; 1996)
	Sociotechnical Systems	Trist & Bamforth (1951); Cherns
		(1976)
	Total systems Intervention	Flood & Jackson (1991); Flood
		(1995); Jackson (1991)

Table 7: System-based Methodologies and Classification

According to Jackson (2003) a methodology is source of "guidance given to practitioners about how to translate [systems] philosophy and [systems] theory of an approach into practical application" (p. 51). With this in mind, it would thus appear that systems theory might be used confront "problems confronting humanity at this stage in our history (poverty, violence, crime, environmental degradation and nuclear weapons...terrorism) [since these problems] are systemic and cannot be understood or resolved in isolation" (Hammond, 2002, p. 430). Moreover, since such problems do not occur in isolation, systems-based methodologies could be used since they embrace ideas such as participatory decision-making processes, self-organization, free will, creativity, and holism - concepts synonymous with systems theory - to address the interdisciplinary and multidisciplinary nature of world issues (Strijbos, 2010; von Bertalanffy, 1972; Warfield, 1976).

Ultimately, learning and bringing about positive change are the hallmarks of any methodological approach. Clearly, the nature of human beings, as well as the nature of systems and their environment make it difficult to select an efficient means to achieve a known objective and a defined end (Jackson 2000; 2003). In fact, Warfield (1976) notes that for centuries, man has faced highly intensified and interlocked shortages in basic necessities (e.g., energy, food, knowledge) and yet experiences excesses in pollution, crime, and war. In the words of Warfield:

It is only within the last two hundred years and in a sense almost within this generation that man has become widely conscious of his own societies and of the larger sociosphere of which they are a part. (as cited in François, 2002, p. 89)

It becomes obvious that a methodology must be multifaceted and should enable exploration, promotion of diversity, ensure fairness, and contribute to understanding, and increase performance and viability of systems in a holistic manner (Jackson, 2003; Laszlo & Krippner, 1998; Ryan, 2008). In this case, a systems-based methodology must support "grappling with complexity [and] has to be a methodology for human learning" (Warfield, 1976, p. 2). Table 8 is drawn from various literatures of systems-based methodologies suggesting areas of applicability and specific phases of the methodologies. A key unifying theme among these approaches is problem formulation – an area of interest for this research. The role of problem formulation and its implications in systemsbased methodologies in complex system governance are the basis of the following section.

,

Systems-Dased Desc	Table 8: Overview Description of Systems-based Methodologies
methodology	ription and Phases of the Methodology
Systems Analysis Attril militi (Jack meth optin Chec has th	 buted to Research ANd Development Corporation (RAND) and used extensively in the US ary, this methodology emerged out of Operations Research after the Second World War cson, 2003). Intrinsically related to systems engineering and mechanistic in nature, this coolology is largely dependent on feedback loops and black boxes of cybernetic management to mize socio-technical systems based on fixed parameters such as cost and benefits (Atthill, 1975; kland, 1993; Digby, 1989; Ryan, 2008). Miser & Quade (1988a) suggest that this methodology hree (3) stages. Gibson et al. (2006) expands these stages into six (6) phases: Determine goals of the system Establish criteria for ranking alternative candidates Rank alternative condidates Iteration
Systems Engineering Trace engir intera intera custo gener & Fa	ed to Bell Telephone Laboratories in the 1940s, Systems Engineering is interdisciplinary field of neering and a methodology for enabling realization of successful systems out of many acting systems (INCOSE, 2011; Schlager, 1956). It focusses on defining technical and business omer needs with the goal of producing quality products that meet user needs (INCOSE, 2011). A ric life-cycle model associated with this approach includes five (5) high level stages (Blanchard ubrycky, 2006): Need identification (conceptual design) Preliminary design Detail design and system development Production/construction of system components Operational use and system support

l able 8 (cont.)	
Operations Research	 Initially developed in the United Kingdom prior to and during World War II, operational research is defined as "the application of the methods of science to complex problems arising in the direction and management of large systems of men, machines, materials and money in industry, business, government and defense. The distinctive approach is to develop a scientific model of the system, incorporating measurements of factors such as chance and risk, with which to predict and compare the outcomes of alternative decisions, strategies or controls. The purpose is to help management determine its policy and actions scientifically" (Jackson, 2000, p. 128) by the British Operational Research Society. Commonly associated with determining a maximum or minimum variable (e.g., profit, performance, yield, loss, risk) inventory, allocating, waiting-time, replacement, competitive, and combined processes, operations research was developed to deal with complex organizations that are under control of management (Churchman et al., 1957; Jackson, 2000). Formulating the problem Construction of a mathematical model representing a system under study Deriving a solution from the developed model Testing the model and the derived solution Establishing controls over the solution Implementation of the solution
Systems Dynamics	 Developed by Jay Wright Forrester at Massachusetts Institute of Technology, this methodology is concerned with limits of growth and understanding of the system structure using feedback loops as the main determinants of system behavior (Forrester, 1961; Senge, 1990; Sterman, 2000). Four major variables associated with this methodology include (1) system boundary, (2) network of feedback loops, (3) variables of 'rates' or 'flows' and 'levels' or 'stocks' and (4) leverage points. Mathematical in nature, this methodology is comprised of five (5) phases (Maani & Cavana, 2000): Problem structuring Causal loop modeling System dynamic modeling Scenario planning and modeling Implementation and organizational learning

 $(\downarrow$ Table Q /

Table 8 (cont.)	
Organizational Cybernetics	Developed by Stafford Beer, this cybernetic methodology embodies the idea that organizations are black boxes characterized by complexity, self-regulation and probabilistic behaviors (Jackson, 2003). Using the human body as the most complex known viable system, Beer set out to create a model that can be used to explore complex system behavior without breaking it into parts (Espejo & Reyes, 2011). The output was the Viable System Model (VSM) which is based on neurocybernetic model consisting of five (5) essential subsystems that are aligned with major viable organizational functions:
	 System 1 - elements concerned with performing the key transformations of the organization System 2 - information channels that enable System 1 elements to communicate between each other and allow System 3 to monitor and co-ordinate System 1 activities System 3 - consists of structures and control mechanisms that establish rules, resources, rights, and responsibilities for System 1 and provides an interface with Systems 4 and 5
	 System 4 - elements which look outward to the environment for issues that might affect the viability of the organization System 5 - creates policy decisions within the organization as a whole to balance demands from different organizations and provides direction for the organization as a whole (Beer, 1979; 1981; 1985).
	It is important to note that the VSM is more "a model rather than a methodology and can be used for purposes other than those prescribed by Beer" (Jackson, 2003, p. 88). Being a model, it does not have a clear set of prescribed phases for deployment. Nonetheless, Jackson (2003) suggests two (2) general stages:
	 System identification – arriving at an identity for the system and working out appropriate levels of recursion System diagnosis – reflecting on the cybernetic principles that should be obeyed at each level of recursion (Jackson, 1991)

Table 8 (cont.)	
Surfacing and Testing	 Attributed to Ian Mitroff and Richard Mason, this methodology is concerned with policy and planning aimed at organized complexity of 'wicked problems' which are characterized by interconnectedness, complicatedness, uncertainty, ambiguity, conflict, and societal constraints (Mason & Mitroff, 1981). The methodology is based on the premise that formulation of right solutions to the right problem requires uncovering critical assumptions underlying policy, plan, and strategy. This enables management to compare and contrast and gain new insights on their assumptions and 'wicked' problems (Mitroff & Emshoff, 1979). There are five (5) phases associated with this methodology (Mason & Mitroff, 1981; Mitroff & Emshoff, 1979): Group formation Assumption surfacing and rating (regarding the problem) Dialectic phase Assumption integration phase Composite strategy creation
Interactive Planning	 Developed by Russell L. Ackoff, this methodology focuses on creating a desired future by designing desirable present conditions. It is made up two parts: <i>idealization</i> and <i>realization</i>. These parts are divisible into six interrelated phases (Ackoff, 1974; 1981a; 1981b; 1999): Formulating the mess Ends planning Means planning Resource planning Design of implementation Design of controls
(cont.)	

∞	
e	
[q]	
Ê	

Soft Systems	Attributed to Peter Checkland and his colleges at Lancaster University, this methodology emerged as
Methodology	a response to need for methods that can be used to intervene in 'ill-structured' problem situations
	where it is important to learn about systems while still focusing on 'goal-seeking' endeavors that
	answer 'what' should be done and 'how' it should be done (Jackson, 2003). Checkland's (1990)
	work suggested that understanding issues such as context, largely ignored in systems engineering
	provided a more rigorous attempt to tackle problematic situations coherently. This methodology is
	comprised of seven (7) stages (Checkland, 1990; Checkland & Poulter, 2006; Wilson, 1984):
	Situation considered problematical
	Problem situation expressed
	Root definitions of relevant purposeful activity systems
	 Conceptual models of relevant systems named in the root definitions
	Comparison of models and the real world situation
	Define changes that are desirable and feasible
	• Take actions to improve the problem situation

(cont.)
∞
e
ρ
Та

Systems of Systems Engineering Methodology	 Attributed to researchers at the National Centers for Systems of Systems Engineering (see Adams & Keating, 2009; 2011; Keating et al., 2004), this methodology is intended to provide a high-level analytical structure to explore complex system problems (Adams & Keating, 2011). In order to enhance our understanding of complex systems, SoSEM is taken as a "rigorous engineering analysis that invests heavily in the understanding and framing of the problem under study" (Adams & Keating, 2011, p. 113). In DeLaurentis, Sindiy, and Stein (2006) research, a three-phase approach (i.e., defining SoS problem, abstracting the system, modeling and analyzing the system for behavioral patterns) is suggested. In Adams and Keating (2009; 2011) and Keating et al. (2005), a seven (7) stage process which consists of twenty three (23) constituent elements is suggested: Framing the system under study Designing the unique methodology SoSE exploration and analysis Transforming the results of SoSE study Assessing the results of SoSE study Assessing the impact of the SoSE study
Critical System Heuristics	 Developed by Werner Ulrich, this methodology is concerned with 'unfairness in society' (Jackson, 2003). It promotes emancipatory systems thinking for planners and citizens alike. Synonymous with this methodology are three phases (Ulrich, 1983; 1987): Identify system of interest in terms of time, space, and human intentionality (i.e., system purposefulness) Reveal human understanding of the whole using 'system', 'moral' and 'guarantor' concepts questions. The methodology uses a four level of categorization of stakeholders - clients, decision-makers, designers, and witnesses

Table 8 (cont.) Drganizational Cearning Sociotechnical Systems	 Developed by Chris Argyris and Donald Schön, this methodology is concerned with single-loop and double-loop learning where management of organization is able to contrast 'expected outcomes' with the 'obtained outcomes.' Contrasting these outcomes involves learning based on errors with the 'obtained outcomes.' Contrasting these outcomes involves learning based on errors oplicies, and objectives (Fiol & Lyles, 1985). A key premise of this methodology is that learning and adapting new knowledge must be generated at the individual as well as at organizational level (Argyris & Schön, 1978; 1986; Argyris, 1985). This is done through (Argyris & Schön, 1976): Shared understanding of possible actions Shared understanding of possible actions Developing a common meaning of problem system including solutions Attributed to Eric Trist, Ken Bamforth and Fred Emery and their work at the Tavistock Institute in London. this methodology is concerned with a joint optimization of both social/soft including human and technical aspects of organizations (Pasmore, 1988). This methodology involves seven (7) phases, or nine (9) major steps as postulated by Pasmore (1988) for redesigning of sociotechnical systems (Taylor & Felten, 1993): Discovery (recognizing a need for change) Open system analysis Social system analysis Social system analysis
	Provisional design
	Implementation

Total Systems	Developed in the early 1990s by Robert Flood and Michael Jackson, this meta-methodology
Intervention	emerged out of the recognition of strengths of capabilities of individual systems approaches, the
	need for pluralism in systems thinning, and calls for emancipatory ideas in systems thinking - in
	reference to critical systems thinking (Jackson, 2003). This methodology is based on the premise that
	contemporary systems-base methodologies are not complementary. Laszlo and Krippner (1998) thus
	suggested that a successful complex organizational intervention might require a 'combination' of
	any set of systems-based approaches. This methodology is underpinned by principles of complex
	situations and consists of three (3) phases (Flood & Jackson, 1991; Flood, 1995; Jackson (1991):
	Creativity - highlighting dominant concerns, issues, and problems in a problem context
	Choice - selection of suitable systemic strategy
	Implementation - employing the selected systems methodology to impose change on reality

2.1.5 Problem Formulation

A key fundamental activity of systems-based methodological approaches is formulation of problems in the system of interest. This phase provides a portal into complex system understanding and is instrumental to the eventual development of solutions that might bring about positive change (Dery, 1984; Lynn, 1980; Warfield, 1976).

There are differing terminologies associated with the phase of problem formulation. Descriptors such as *formulating the mess* (Ackoff, 1974; 1978; Majone & Quade, 1980; Mason & Mitroff, 1981; Mitroff & Emshoff, 1979), *problem articulation* (Wellington, 1887), *problem bounding* (Checkland, 1993), *problem context* (Crownover, 2005; Jackson, 1991; 2003), *problem definition* (Dery, 1984; Blanchard & Fabrycky, 2006; Gibson et al., 2007; Warfield, 1976), *problem framing* (Adams & Meyers, 2011; Fairhurst & Sarr, 1996; Keating et al., 2003a), *problem identification* (Majone & Quade, 1980), *problem setting* (Majone & Quade, 1980; Miser & Quade, 1988a), and *problem situation* (Miser & Quade, 1988b) reflect different ways to which problem formulation has been described.

Regardless of different descriptors, there is wide acknowledgement of the importance of problem formulation - ranging from ideas of defining problems to developing effective solutions. First, this phase is intrinsically linked to how human beings view the world. Quade's (1980) work suggests that a major element of problem formulation relates to being "dissatisfied with current or projected state of affairs" (Quade, 1980, p. 23). To enable successful succeeding steps, the analyst must attempt to bring as much clarity as possible to the situation under study (Warfield, 1976). Such

efforts, according to Quade (1980) involve "identify[ing] the problem to be studied and define its scope in such a way that he has some hope of finding an acceptable and implementable solution within the economic, political, technological, and other constraints that exist, including the limitations imposed by the policy maker's span of control and the time available for decision" (p. 23). Consequently, how the analyst views the situation has a major impact on problem formulation.

Additionally, problem formulation is not simply "a descriptive definition [of situations], for it does not merely describe but also chooses certain aspects of reality as being relevant for action in order achieve certain goals" (Dery, 1984, p. 35). As supported by Vennix's (1996) work that suggests "people [may] hold different views on (a) whether there is a problem, and if they agree there is, (b) what the problem is" (Vennix, 1996, p. 13) and the fact that problems "arise from a problem area or nexus of problems rather than a well-define problem" (Quade & Miser, 1985, p. 17) coupled with Dery's (1984) supposition that "problems are not objective entities in their own right" (Dery, 1984, p. 65), problem formulation must address a plurality of objectives held by involved stakeholders (Rittel & Webber, 1973). It would thus appear that problem formulation includes identification of issues, aids in directing solutions, and accounts for the human element.

Moreover, problem formulation is recognized as being related to overall systems success. Wellington (1887) suggests that "the correct solution of any problem depends primarily on a true understanding of what the problem really is, and wherein its difficulty, we may profitably pause upon the threshold of our subject to consider first, in a more general way, its real nature – the causes which impede sound practice; conditions on

which success or failure depends; directions in which error is most feared. Thus we shall more fully attain that great prerequisite for success in any work - a clear mental perspective, saving us from confusing the obvious with the important and the obscure and remote with the unimportant" (p. 1). Table 9 is drawn to indicate the breath of concepts associated with problem formulation from systems literature. Consequently, the problem formulation phase, irrespective as to what it is named, "has subsequently been considered the most critical stage in policy analysis" (Dery, 1984, p. 2) and is "probably the single most important routine, since it determines in large part...the subsequent course of action" (Mintzberg et al., 1976, p. 274).

Form	
Problem	
5	
Related	
ts	
cep	
of Con	
Breadths of Con	
Fable 9: Breadths of Con	

	SI	Problems as Pathological Conditions	x						X									x
	system	Frame the context						x								x		×
	mplex	Problem setting						x				x				x		x
on	n for co	Context of Problem/Situation/Study					Х	х					x		x			x
mulati	iculatio	Context/Contextual Integrity			х		x	х			х		x		x	x		x
n For	m arti	Generalize						х			x							x
o Probler	to problei	Problem as constructive or interpretive entity			x		x	x							×	x		x
lated t	elated	Problem as objective entity						x	x									×
epts Re	cepts r	problem problem	×			x		×	x	×		x	×					×
of Conce	Con	problem problem	x		x		×	×									x	×
Table 9: Breadths		nismo(l	Management	Cybernetics	Systems Analysis	Systems Analysis	Systems Analysis	Engineering Management	Policy Analysis	Systems Engineering	Systems Analysis	Systems Engineering	Systems	Engineering/SoSE	Systems Analysis	Systems Analysis	Systems Analysis	Complex System Governance
		Authors	Beer (1984); Ríos (2012)		Bergvall-Karebon (2002)	Bowen (1998)	Checkland (1985)	Crownover (2005)	Dery (1984)	Farr and Buede (2003)	Gibson et al. (2007)	Hitchins, 2003	Keating et al. (2001b,	2003a); Keating & Sousa- Poza (2003)	Quade & Miser (1985)	Schön, 1983	Vennix (1996)	Katina (2015)

Moreover, it could be argued that the problem formulation phase serves to reduce

the probability of solving the wrong problem precisely. Known as Error of the Third

Kind (Kimball, 1957; Mitroff & Featheringham, 1974; Mitroff, 1998; Mosteller, 1948).

solving the wrong problem originated in statistics where Mosteller (1948) suggested:

In other words it is possible for the null hypothesis to be false. It is also possible to reject the null hypothesis because some sample O_i has too many observations which are greater than all observations in the other samples. But the population from which some other sample say O_j is drawn is in fact the right-most population. In this case we have committed an error of the third kind. (p. 61)

Guarding against this error appears relevant in current operating conditions of ambiguity, complexity, emergence, interdependence, and uncertainty. This view is reinforced by the nature of problem complex systems as indicated by Quade and Miser (1985):

[they have] problems in which many elements interact as part of what, by definition, is conceived to be the system associated with the problem [calling for] numerous interrelated but disparate elements...The complexities of each of these problems and the large numbers of people concerned with how they are solved, make it clear that many decision-makers are involved, many people's interests are affected, and many constituencies may have competing objectives...moreover, ...attended by many uncertainties. (pp. 12-13)

In such instances failing to properly scope the problem might create the

conditions for solving the wrong problem and can result in developing ineffective solutions (Mitroff, 1998). This might result in cost spiraling out of control (Katina et al., 2014a) and harm an analysts "measure of credibility" (Majone & Quade, 1980, p. 97). Hence, efforts dedicated to problem formulation must be pluralistic and consider multiple "disciplines involved, methods used, the forms of communication adapted, [as well as] context" (Quade & Miser, 1985, p. 18). Adams and Hester (2012) suggest that systems analysts must ensure that a "problem system ...[is] adequately bounded, [and] include[s] empirical data of both the quantitative and qualitative types, and include[s] an

understanding of both the environment and relevant stakeholders" (p. 236).

Each methodological approach includes an activity or phase dedicated to problem formulation. In the 'hard' systems approaches, this phase is necessary in the optimization process relevant to "efficient means of achieving a known and defined end" (Checkland, 1978, p. 73). This is supported by the set of assumptions underlying 'hard' systems approach (Jackson, 2003):

- 1. There is a desired state of a system S_1 , which is known
- 2. There is a present state of the system S_0 ;
- 3. There are alternative ways of getting from S_0 to S_1 ;
- 4. It is the role of the systems person to find the most efficient means of getting from S_0 to S_1 (p. 54)

In this regard, the problem formulation phase is instrumental in identifying the system-of-interest, user needs, and goal/objective tree, which are gained through requirements analysis (Atthill, 1975; Blanchard & Fabrycky, 2006; Gibson et al. 2007; INCOSE, 2011).

Highly dependent on user requirements (Forsberg & Mooz, 1999), problem formulation in 'hard' systems approaches also employs several tools and techniques such as 'needs analysis' (Smith, 2011) to elicit "a complete, unambiguous, consistent, understandable, traceable, and modifiable set of requirements" from various stakeholders including system owners, system engineers, and related third party contractors (Katina et al. 2014a, p. 54).

Similarly, the problem formulation phase in 'soft' systems approaches uses different tools and techniques to produce descriptions, system purpose, system context, relevant stakeholders, and system state which might include dominant and dependent concerns and issues from stakeholder worldviews. Moreover, there is a greater emphasis on the subjectivity in the soft systems-based approaches. At the core of problem articulation is the assumption that dealing with real world systems requires evaluation of human participants including their interests, values, and assumptions (Adams & Keating, 2011; Jackson, 2003; Mason & Mitroff, 1981; Mitroff, 1998; Ulrich, 1987). Therefore, the need to be holistic in systems approaches transcends methodological approaches and includes the problem formulation phase, especially in 'soft' systems approaches as indicated by the increased nature of subjectivity. Table 10 is drawn to indicate role of problem formulation in corresponding systems-based methodologies.

		1	
Methodologies	Purpose of Problem Formulation Method	 Produces objectives and goals tree that enable clarification of requirements and traceability. This is primarily based on 'needs analyses' and requirements engineering processes 	 Initial pass on user needs and requirements documentation Addresses early cost and schedule projection Identification of system-of- interest, its elements, sub- systems, and an early integration, verification, validation planning
Systems-based N	Problem Formulation Method	'Problem definition' phase	'Exploratory research' stage
10: The Role of Problem Formulation in	Methodology Themes	A logical, objective procedure for applying in an efficient, timely manner new and/or expanded performance requirements to the design, procurement, installation, and operation of an operational configuration	An interdisciplinary approach to enable realization of successful systems that meets stakeholder needs. This is done through customer needs definition, development of system functionality, requirements documentation, design synthesis, and verification and validation. Major emphasis is placed on technical operations, cost and schedule, performance, training and support, test, manufacturing, and systems disposal - system life cycle
Table	System-based Methodology	Systems Analysis (Atthill, 1975; Gibson et al., 2007)	Systems Engineering (INCOSE, 2011; Blanchard & Fabrycky, 2006)

Operational Research	An interdisciplinary field that deals	'Problem	٠	Recognizing situation that	
(Churchman et al., 1957;	with the application of advanced	formulation		provides the context for problem	
Morse & Kimball, 1951)	analytical methods to help develop	phase		through need analysis and	
	better decision-making schema.			produces:	
	Characterized by the need to develop			 Statements of objectives 	
	optimal solutions for problem			 Constraints on solutions 	
	situations, this approach uses			 Appropriate assumptions 	
	mathematical models to represent			 Descriptions of processes 	
	systems under study, deriving			 Data requirements 	
	solutions, and testing the model and			 Alternatives for action and 	
	establishing controls for solution			 Metrics for measuring 	****
				progress	
Systems Dynamics	Mathematical modeling approach to	Problem	•	A description of the real world	
(Forrester, 1961; Senge,	framing, understanding, and	structuring		problem domain including;	····-
1990; Sterman, 2000)	discussing complex situations in a	phase		 The purpose of the system 	
	dynamic environment. Characterized			 The boundary of the system 	
	by feedback loops, accumulation of			 The network of feedback 	
	flows into stocks, and time delays. It is			loops	
	instrumental in understanding			- The 'rates' and 'level'	
	relationships and underlying behaviors			variables	
	of complex systems			 The 'leverage' system points 	
Organizational Cybernetics	Diagnosis of structure system	'System	٠	Identifies system purpose;	
(Beer, 1979, 1981, 1985)	functions, relationships, and	purpose.' or	٠	Establishing system boundary	
	communications channels necessary	'System in	٠	Processes for 'design' and/or	
	and sufficient for any system to	focus' phase		'diagnosis' of system problem	
	maintain viable in turbulent		•	System context	
	environment				

Strategic Assumption	Focuses on the resolution of ill-	Problem	Retrieval of relevant stakeholders
Surfacing and Testing	structured problems by identifying f	ormulation'	and their strategies about 'wicked
(Mason & Mitroff, 1981;	multiple stakeholders and examining p	hase	problem' at hand
Mitroff & Emshoff, 1979)	their underlying assumptions in a		 Listing of assumptions as to why
	collaborative problem solving		the stakeholders strategy are
	strategic design plan. It involves		relevant
	dialectical debates that enable solving		 Listing of ranked assumptions
	the 'right problem.'		based on presumed importance of
			the assumptions and truthiness of
			the listed assumptions
Interactive Planning	Derived from the concept of	Formulating	Formulation of the current state
(Ackoff, 1974, 1981a; 1981b,	'interactivism.' This is a participative t	he mess'	of an organization and its
1999)	method for dealing with complex p	phase	environment (what the
	interrelated problems where it is		organization does, rules and
	believed that unless something is		customs, internal and external
	done, a desirable future is less likely to		conflicts, and trends that can
	occur (i.e., taking inappropriate		affect system performance)
	actions increases the likelihood of		 Identification of a system's
	meeting undesirable future). This		Achilles' Heels
	method has six unique phases divided		 Provides an area of focus to
	into two parts - idealization and		enable planning followed by
	realization		identifying what must be avoided
			at all costs

characterization of system, nature doodles' pictorially representing Produces 9 primary elements for techniques, and tools that enable objectives, stakeholder analysis, information about the situation system complexity, framing, associated with set of goals, Produces rich pictures (i.e., holistic understanding of a of system, justification for symbols, sketches and/or Each primary element is consideration in framing complex situations (i.e., contextual analysis, and input, outputs, methods. problem statement and situation-wide context. implication of study) complex satiation . Entering the **'Perspective** 1' phase situation' problem phase in systems characterized as operational and economics are the primary drivers the interactions of technology, policy, formulation of ill-structured problems geographical distributed having intermust function as an integrated whole dealing with grand challenges where Design, deployment, operation, and transformation of metasystems that promotes an emerging approach of evolutionary and having emergent behaviors. Often such systems are to produce desirable outcomes. It disciplinary, heterogeneity and and managerial independence. with appreciation for multiple Process of inquiry focused on networked elements perspectives (Checkland & Scholes, 1999; Soft Systems Methodology **Engineering Methodology** 2011; Keating et al., 2004) Checkland, 2000; Wilson, (Adams & Keating, 2009. **Systems of Systems** 1984)

indary - Identification of relevant	que stakeholders - clients, decision-	e makers, designers, etc. including	environment.	Categorization of stakeholders -	involved stakeholders and	'affected but not involved'	stakeholders	A synthesis of worldviews	related to sources of motivation,	control, expertise, legitimation	(i.e., values), and basis of control	gnosing Identify possible areas for	improvement based on learning	nization	e		• Establishment of problem	ning' boundaries, conceptual team	e understanding, alignment of	goals, and plan of analysis						
Emancinatory methodological 'Bou	approach to complex problems that critic	allows its users to challenge prevailing phase	behaviors and worldviews. It calls for	enhancing reflective competence.	reflective plactice based off theorem in the section of the sectio	underpinning, heuristics, and	systems thinking. Hence, it is used to	examine the legitimacy of prevailing	designs by contrasting 'what is' as	opposed to 'what ought to be.'		Testing studies, models, and theories 'Dia	on the way organizations learn and the	adapt in rapid changing environment; orga	efficient use of feedback in single and phas	double loop learning	Concerned with joint optimization 'Pro	between people and technology at the scan	workplace. The approach recognizes phase	the importance of interaction between	people and technology in workplace.	Considers social and technical factors	that create conditions for successful or	unsuccessful system performance.	Optimizes one aspect (socio or	tashnigal)hilo accounting for immost
Critical System Henristics	(Ulrich, 1983, 1987)											Organizational Learning	(Argyris, 1985; Argyris &	Schön, 1978, 1996)			Sociotechnical Systems	(Pasmore, 1988; Taylor &	Felten, 1993; Trist &	Bamforth, 1951)						

Total Systems Intervention	A system problem solving approach	'Creativity'	•	Identification of dominant and	
(Flood & Jackson, 1991;	based on creative thinking, appropriate	phase		dependent concerns including	
Flood, 1995; Jackson, 1991)	method selection, and implementation			current issues and problems in	
	of method based on change proposals			the system	
	to solve complex issues				

Cleary, problem formulation is an essential element of overall systems development as illustrated by the degree of agreement of the necessity across the systems-based approaches. Moreover, the purview of problem formulation includes identification of factors that may act to limit expected performance of the system under study. However, Brewer's (1975) remarks: "the simple question, 'what's the problem? Is often never asked at all by the analysis; it is assumed" (p. 5) is a concern. Rein and White (1977) echo this concern, suggesting that while problem formulation is "perhaps the most crucial part ...it has traditionally been the least well codified aspect of research in the canons of methodology" (p. 131). It would thus appear that there is still opportunity to clarity how to do complex problem formulation (Crownover, 2005).

Therefore, Dery's (1984) statement: "As teachers, consultants, and researchers, we often warn against the hazards of poor problem formulation. We praise 'systems thinking,' ridicule the tendency to do the same, and leave the rest to creative minds" (p. 3) supports the conclusion that there is a need to (re)think problem formulation. One possible approach is to draw attention to identification of systemic pathologies that may act to limit expected performance of a system under study that must operate in the milieu of ambiguity, complexity, emergence, interdependence, and uncertainty as the hallmarks of modern systems and their constituent problems.

2.1.6 System Pathologies

This section provides a perspective on pathologies in a broader sense and then in systems related to the problem formulation phase of systems-based methodologies. First, it is essential to recognize the etymology of the term 'pathology.' Webster's New Explorer Encyclopedic Dictionary suggests that the term *pathology* is derived from two ancient Greek terms: *pathos* (i.e., suffering, experiencing, and emotions) and *logia* (i.e., study of) (Merriam-Webster, 2006). The usage of the term emerged in early 17th century and was commonly associated with examination of dead bodies in hope of uncovering the cause of death (Long, 1965). Since earlier attempts to uncover causes of death where often related to understanding structural and functional changes, paying close attention to physical changes played a critical role in understanding morphological changes (van den Tweel & Taylor, 2010).

In the middle ages, it was widely believed that life was sustained by humors. Medical philosophy of humoral theory held that the human body was filled with four basic well-balanced substances of black bile, yellow bile, phlegm, and blood (Bynum & Porter, 1997). It was then held that these basic substances were intricately linked to four elements of earth, fire, water, and air that sustained life and that imbalance (i.e., excess or deficit) in the humors was the cause of diseases and death (Bynum & Porter, 1997; van den Tweel & Taylor, 2010). However, it was not until the 19th century that this philosophy was replaced by a more scientific cellular theory of Rudolf Virchow and bacteriological theory of Louis Pasteur where disease is understood via microscopic analysis of infected cells (Bynum & Porter, 1997). The discoveries of disease-causing microbes (e.g., bacteria, virus, and fungi) suggested that symptoms could be observed and treated to prevent structural and functional changes in the human body (Long, 1965). However, since a symptom is only indicative of an underlying problem, it became obvious that there was a need to examine underlying causes of symptoms so that proper treatment can be prescribed (e.g., see van den Tweel & Taylor, 2010).

Thus etymologically, the term 'pathology' relates to attempts to understand observed symptoms and determining the cause of disease and death through dissection. Moreover, pathology is also intrinsically related understanding structural and functional morphological changes and encompasses disease etiology, disease pathogenesis, cell morphologic changes and consequences of changes (Kumar et al., 2010). Interestingly, the term 'pathology,' is not restricted to understanding symptoms and cause of diseases in human and animal systems. In fact, pathology has also been used in relation to understanding issues that might act to lessen system performance and growth in inanimate systems and is found in management theory, policy analysis, management cybernetics, and intelligent systems.

In management theory and organizational studies, pathology is used to describe organizational issues that can affect performance of formal organizations. Barnard's (1946) work on formal organizations describes functional and scalar pathological conditions that affect organizational growth. The functional status of a system describes the individual conditions such as privileges, rights, immunities, duties, and obligations that can affect performance of an organization while the scalar status of a system is determined by relationships of superiority in organizational hierarchy and jurisdiction (Barnard, 1946). Since Barnard's (1946) view of pathology suggests that pathologies limit organizational growth, understanding 'system status' is pertinent to improving and maintaining system performance. Table 11 provides an overview of Barnard's (1946) six pathological conditions affecting organizations. In this instance pathologies are related to organizational management structures that can act to limit growth of an organization.

System Status	Pathology Description
Pathologies	
Time-relevant	A pathology that emerges in an organizational setting because
pathology	of human tendency to become complacent overtime in relation
	to functional status (i.e., duties) and scalar status in an
	organization (i.e., relationships and boundaries)
Elite circulation	A pathological condition associated with failure to recognize
pathology	effects of aging, deterioration of physical, moral, and human
	intellect on organizational growth
Justice distributive	A pathological condition associated with an organizational
pathology	setting that is biased towards one end of an organization and
	failure to protect essential but not powerful members or
	elements of an organization (e.g., lower ranked members in the
	organization)
Communication-	These pathologies emerge from having ineffective
relevant pathology	communication mechanisms where important organizational
	standards (i.e., visible policies) are largely ignored while the
	heuristics of the organization (i.e., invisible policies) are easily
	acknowledged and adopted in the organization setting
Position-relevant	A pathological condition associated with symbolism, rank,
pathology	office, class, or trade especially when the people in a position
	become to symbolize status such as 'clergymen' or a 'doctor.'
Adaptability pathology	These pathological conditions can emerge out of external
	environment that the organization must adapt to in order to
	remain stable while providing for coherence, coordination and
	esprit de corps

Table 11: System Status Pathologies

In policy analysis, an area of research that deals with "determining which of various alternative policies will most achieve a given set of goals in light of the relations between the policies and the goals" (Nagel, 2001, p. 71), problem identification is one of the key aspects of analysis. In this phase, determination of goals, setting the boundary, understanding context, target social system, and drawing an initial approach, takes place (Quade, 1980). Interestingly, Dery (1984) equates pathologies to "discrepancies [in social systems] between cherished goals and reality - whose existence and undesirability can be taken for granted" (p. 38). Moreover, the complexities involved in understanding social

issues, suggests that the concept of social pathologies varies based on people's worldviews where "a problem is not the same to all interested parties" (Becker, 1966, p. 7) and yet a given problem may not "necessarily [be] the same to all disinterested parties, or even to the same researcher" (Dery, 1984, p. 25).

In management cybernetics, pathology describes deviations or shortcomings in subsystem functions of the Viable System Model (VSM) based on the seminal work of Stafford Beer. Pathologies act to limit organizational viability. Using principles of communication and control to govern complex systems, Stafford Beer's work supplemented by research of Espejo and Harnden (1989), and Keating and Morin (2001), envisioned the necessary and sufficient subsystems of productive (S1), coordination (S2), operations (S3), monitoring (S3 Star [*]), system development (S4), learning and transformation (S4^{*}), and system policy and identity (S5) as well as their functions for organizational viability (continued existence) despite turbulent environmental conditions (Beer, 1979; 1981; 1985). Moreover, Beer also postulated that "viable systems of all kind are subject to breakdown. Such breakdowns may be diagnosed, simply in the fact that some inadequacy in the system can be traced to malfunction in one of the five subsystems, where in turn one of the cybernetic features ... will be found not to be functioning" (Beer, 1984, p. 17). With this view in mind, Beer (1984) postulated that management ought to give attention to configuration of systems to avoid the following pathological conditions that might affect organization viability: (1) recursive pathology system lacks viability because it is not contained in a viable system, (2) identity pathology - where S5 does not represent the totality of the system, (3) subsystems 2-4 mismatch pathology - lacking of synergy and interactivity among S2, S3, S3*, S4, and

S4*, and (4) metasystem pathology – lacking of S2, S3, S3*, S4, S4* and S5 in the system.

Similar to Beer's (1984) postulation that "the etiology of the disorder may be traced, a prognosis may be prepared, and antidotes (even surgery) may be prescribed" (p. 17) based on cybernetic enquiries with respect to viable organizations. Ríos (2010; 2012) noted that pathologies are related to inadequacies (or lack of adhering to) cybernetic principles in designing complex organizations. Three broad categories of organizational pathologies are structural, functional, and informational. Structural pathologies are "related to an inadequate treatment of total complexity faced by an organization" (Ríos, 2012, p. 142). Functional pathologies are deficiencies associated with "each of the organisations that compose the total organization...The aim is to see whether the essential functions (systems) necessary for the organisation's viability exists and work adequately" (Ríos, 2012, p. 142). The communication and information pathologies pertain lack of (or inadequacies in) mechanisms that must enable transfer of information between subsystems and the environment (Beer, 1984; Ríos, 2012). Table 12 provides a broad categorization of pathologies from a cybernetics perspective.

Since, "the degree to which the system effectively performs Beer's five VSM subsystem functions, coupled with the flow of information in support of those functions, determines the efficacy of the system and ultimately the level of system performance achieved" (Keating & Katina, 2012, p. 249), it is reasonable to conclude that the concept of pathologies associated with organizational (system) viability is related to inadequacies in functions, communications systems, and mechanisms associated with such elements of an organization.

	Table 12: Expanded VSM Pathologies
Organizational Pathology	VSM associated pathologies
Structural	Non-existence/inappropriate of vertical unfolding: the inexistence of vertical division necessary to reduce complexity (variety) into appropriate scope of activity
	Lack of recursion levels (level 1): this recursion occurs only at the second level. Recall that S1 address issues in their environment. However, there might be instances where there is no corresponding to recursion
	level 0 where issues transcending S1s must be addressed
	Lack of recursion levels (middle level): there exists level 0 and level 2. However, the intermediate oroanizational level structure linking organization (level 0) to level 2 is missing
	Entangled vertical unfolding: various interrelationships contribute to viability of an organization. However,
	such relationships must be maintained. Lack of maintaining such relationships can create conflicting system
	identities especially if the system does not have appropriate communication channels
Functional	Subsystem 5 pathologies: the pathologies include ill-defined system identity, institutional Schizophrenia, collapsing S5 into S3, and inadequate representation of system
	System 4 pathologies: these pathologies are associated with concepts of a headless chicken (i.e., it might run
	around for a while but soon dies) and an ostrich with its head in the sand (i.e., it is afraid to partake in
	environmental scanning activity for outside and future issues that might enable or constrain its operations)
	and dissociation between S4 and S3
_	System 3 pathologies: these pathologies are associated with having an inadequate management style (e.g.,
	excessive direct intervention by S3), S3 that is Schizophrenic, weak connections between S3 and S1s and
	hypertrophy of S3
	System 3* pathologies: these pathologies include a lack of or insufficient development of S3 such that it is
	overwhelmed by information generated from S1s, S2, and S3
	System 2 pathologies: these pathologies relate to disjoint behavior of S1s (i.e., each on his own) and
	authoritarian S2 (i.e., authoritarian operational management styles)
_	System 1 pathologies: these pathologies include having an S1 that becomes an autopoietic system and an S1
	that becomes dominant over the metasystem

\sim
. :
=
<u> </u>
0
0
Ē
\sim
0
<u> </u>
-
,

In intelligent systems, pathology is used in connection with adopted organizational structures that might contribute to eroding system effectiveness (Sheptycki, 2004). In such a system, knowledge is created from acquired data which eventually leads to taking specific actions. At a general level, there is a *direction activity* in which the 'customer's intelligence needs' are identified and established. A *collection activity* in which information pertinent to customer need is gathered, and a *processing activity* in which analysis takes place to convert information into consumable 'intelligence packages.' A *dissemination activity* involves giving 'intelligent packages' to customers and then a *final activity* which involves a joint assessment of what was done and what should take place (Sheptycki, 2004). To accomplish these activities especially in a crime policing environment, there is need for collaborative effort involving different organizations at different levels of intelligence.

Two issues pertinent to current dialogue come into play: First, the principles of information flow for "intelligence [systems] is supposed to flow upwards in the data pyramids" (Sheptycki, 2004, p. 313). However, Sheptycki (2004) notes that since different agencies operate on different pyramids of intelligence, there is no standard operating procedure across all intelligence systems. Second, given that the structure of intelligent systems is multi-agency, there is a need for "movement of information between or across these information hierarchies" (Sheptycki, 2004, p. 313). Moreover, the multi-agency hierarchies of intelligence systems ensure that different agencies operate at different levels on the intelligence landscape. These two issues coupled with the desire to transform intelligent systems into more effective intelligent systems, according to Sheptycki (2004), create the right conditions for the 11 organizational process

pathological conditions. These conditions include digital divide, linkage blindness, noise pathology, intelligence overload, non-reporting and non-recording, intelligence gaps, duplication pathology, institutional friction, intelligence hoarding and information silos, defensive data concentration, and occupational subcultures. These pathological conditions may act to lessen effectiveness in intelligence systems. Sheptycki's (2004) work not only suggests that adapted organization structures, policies, or strategies might be sources of deficiencies in organizational operations, but also illustrates that pathology can be described in terms of technology and day-to-day organizational processes.

This selected literature serves two primary purposes. First, it provides a means to diverge from the traditional medical formulation of 'pathology' (Dietel & Schäfer, 2008; van den Tweel & Taylor, 2010) commonly associated with disease etiology, disease pathogenesis, cell morphological changes, and health change consequences (Kumar et al., 2010) to a more contemporary formulation that considers health of inanimate systems including computer systems (Bobba, et al. 2007), complex organizations (Barnard, 1946; Beer, 1984; Ríos, 2012), and social systems (Beer, 1984; Yolles, 2007). Second, this extended view of pathology provides a platform for viewing pathology in terms of factors and issues that act to limit expected system functions. Figure 9 is drawn to depict an emerging concept of systems-based function pathology. Certainly, identifying factors acting to limit system performance is a natural fit for problem formulation, as demonstrated from the literature. This process might involve articulation of internal (e.g., organizational policy) or external (e.g., environmental changes) factors that may limit

growth, sustainability, and viability systems operating in contemporary turbulent environmental conditions.

Figure 9: A Logic of System Function-based Pathologies

This section indicates that when we view organizations as systems (Beer, 1984; Ríos, 2010; 2012; Skyttner, 2005), pathologies revolve around the ideas of deficiencies associated with adopted 'organizational policies and processes,' and 'environmental conditions' that enable or disable system functions. Certainty, Keating and Katina's (2012) definition of pathology fits within the scope of this research:

A circumstance, condition, factor, or pattern that acts to limit system performance, or lessen system viability [and growth], such that the likelihood of [the] system achieving performance expectation is reduced. (p. 253)

Additionally, since complex systems do not operate in isolation (Hammond, 2002; Katina et al. 2014b; Skyttner, 2005), it stands to reason that problem formulation and the identification of pathologies must be include the concept of metasystem - a higher logical order beyond a single system of interest (Djavanshir et al., 2009; Krippendorff, 1986). The concept of metasystem pathology is the basis for the following section.

2.1.7 Metasystem Pathologies

It was previously established that complex systems and systems of systems operate under conditions of ambiguity, complexity, emergence, interdependence, and uncertainty. Under such conditions, it is expected that systems and their related problems cannot exist in isolation (Hammond, 2012). Consequently, researchers have argued that society's most vexing problems cannot be addressed in isolation (Capra, 1997; Hammond, 2002; Laszlo, 1996). To bring about positive change in today's systems based society, researchers often suggest the application of systems theory as a potential source of response to addressing today's most pressing issues in a holistic manner (Adams et al. 2014; Hammond, 2002; von Bertalanffy, 1972). By extending these ideas to problem formulation, it appears that identifying system pathologies can be extended to the metasystem level as well.

The idea of using systems theory to enhance the problem formulation phase is certainly within the bounds of application of systemic thinking where the concern is placed on whole systems rather than parts of the system (Simon, 1969). This might provide a convenient place to address system pathologies beyond single isolated systems and place focus on the pathologies at the higher logical order beyond any given system (metasystem). A metasystem is said to lie beyond individual system objectives and overrides such systems in favor of overall system functions, missions, or objectives (Djavanshir et al., 2009; 2012; Krippendorff, 1986). In this regard, *a metasystem is a governing structure that integrates autonomous complex systems* (*i.e., governed complex systems*) to achieve functionality beyond constituent systems. Figure 10 is drawn to provide a basic structure metasystem in relation to a governed system.

Figure 10: The Logic of Metasystem in Relation to a Governed System

There is a long history of governance in Greek and Latin languages. In Greek, it refers to *kybernetikos* which translates to the art of steering (Mason & Mitroff, 1981). The equivalent term in Latin is *gubernetes* and relates to gubernator or to govern. Schneider and Kenis (1996) have extended governance to include societal control and self-regulation. Moreover, Schneider and Bauer (2007) espouse that "if a 'problem' is defined as the difference between a preferred state and an undesired status quo, the function of governance is 'problem-solving' in the sense of moving to desired states" (p. 11). Hence, governance is related to regulation such that realization of desired long and short-term goals is enabled. In addition, a governing structure provides principles, norms, rules, and procedures that guide and restrain formal and informal processes in organizations (Nye & Donahue, 2000). Furthermore, governance ensures that members under the governing structure adhere to specific regulations. For complex systems and systems of systems, these definitions would suggest that a metasystem provides the essential sets of mechanisms, principles, and regulations to enable the governed system to move toward a desired overall state (Yolles, 2006). Consequently, a metasystem structure can be used to enhance problem formulation, especially in identifying pathologies at a higher logical order beyond single systems that constrain system performance.

Perhaps a well-articulated description of a metasystem is that of Beer's (1979) work related to viability of complex systems. Consistent with Espejo and Reyes (2011). Keating and Katina (2012), and Ríos (2012), Beer's (1979) articulation of the viable system model (VSM) suggest that a metasystem is comprised of five subsystems of coordination (S2), operations (S3), monitoring (S3*), system development (S4), learning and transformation (S4*), and system policy and identity (S5) and their associated functions. The purpose of the metasystem is to provide for the integration of the autonomous productive subsystems (S1) that produce the value of system as an integrated unity. Table 13 identifies VSM functions and their corresponding objectives.

VSM Function	Primary Objectives
Productive	1. Produce system products and services to agreed-upon
(S1)	standards and performance levels within allocated resources
	(from S3)
	2. Provide direct interface to the local (e.g., customer) system
	environment
	3. Operate autonomously to execute system work with agreed-
	upon integration parameters
	4. Interface with S2 for coordination with the larger system
Coordination	1. Maintain coordination among S1s (productive units)
(S2)	2. Promote system efficiency by identifying unnecessary or
	redundant resources in use across S1s
	3. Identify system integration issues for system level resolution
	4. Identify and manage emergent conflict between S1s
Operations	1. Operational planning and control for on-going system
(\$3)	performance
	2. Operational response to inputs from other Subsystems
	3. Interprets and implements policies and direction from S5
	4. Interface with S4 to re-design operations in response and
	anticipation of identified environmental shifts
	5. Negotiate resource, performance accountability, and
	reporting expectations for S1s
Monitoring	1. Monitor subsystem and system level performance
(\$3*)	2. Identify and analyze deviant performance, unexpected events
	(crises), and operational conditions and trends
Development	1. Foster strategic system learning, development, and
(S4)	transformation
	2. Maintain environmental scanning, analysis, and
	interpretation
	3. Maintain models of the environment, entire system, and
	tuture
	4. Interface with Subsystems concerning system implications
	stemming from environmental scanning results
	5. Disseminate essential environmental intelligence information
	throughout the system for potential action
Learning and	1. Identify, assess impact, and derive learning implications for
1 ransformation	trends, events, and patterns occurring in the system
(54*)	environment
	2. Guide system transformation strategy development and
	implementation

Table 13: Summary of VSM Functions

Table 13 (cont.)

Identity and	1. Maintain and propagate system identity
Policy	2. Define and clarifies the system vision, purpose, mission, values and
(\$5)	their consistent interpretation
	3. Balance focus between present (S3) and future (S4) needs and priorities
	4. Establish system policy and strategic direction
	5. Represent and communicate the system to external entities
	6. Process input from other Subsystems for system implications

Following Keating and Katina's (2012) definition of pathology, it would thus

appear that a metasystem pathology is:

a circumstance, condition, factor, or pattern that acts to limit system performance, or lessen system viability and growth at the metasystem level, such that the likelihood of achieving desired performance is reduced.

The concept of metasystem pathology has been briefly discussed in literature.

Beer's (1979; 1981; 1985) work on VSM identifies four pathological conditions that hinder system viability. One of these instances is described as a lack of metasystem subsystems (i.e., S2, S3, S3*, S4, S4* and S5). This metasystem pathology emerges from inadequacies in the design of the system such that subsystem functions are non-existent (Beer, 1984). Extending Beer's work on pathologies, Ríos (2012) has suggested that a metasystem pathology might also be observed as a weakly performing, or executed, metasystem. This is the case when an organization pays more attention to developing governed autonomous productive subsystems (S1) while ignoring the governing structure of metasystem (S2, S3, S3*, S4, S4* and S5) and their functions (Ríos, 2012).

Furthermore, Keating and Katina's (2012) research extended the concept of metasystem pathologies to the domain of systems of systems (Keating et al., 2003b; Keating & Katina, 2011). Using 41 primary objectives of the six (6) VSM based

metasystem subsystem functions (Beer, 1979; 1981; 1985), Keating and Katina (2012) developed 41 metasystem pathologies "indicative of inadequacies in the design. execution, or interpretation of the performance of the system[s] of systems" (Keating & Katina, 2012, p. 253). Table 14 is drawn to indicate potential systems of systems (metasystem) pathologies based on the cybernetic VSM metasystem functions (Keating & Katina, 2012).

Metasystem Function	Nature of Potential Systems of Systems Pathologies
Coordination (S2)	S2.1. Unresolved coordination issues within the system
	S2.2. Excess redundancies in system resulting in inconsistency and inefficient utilization of resources (including information)
	S2.3. System integration issues stemming from excessive entity isolation or fragmentation
	S2.4. System conflict stemming from unilateral decision and action
	S2.5. Excessive level of emergent crises within the system
	S2.6. Weak or ineffective communications between system entities
	S2.7. Insufficient standardized methods (procedures, processes) for routine system level activities
	S2.8. Overly ad hoc system coordination versus purposeful design
	S2.9. Difficulty in accomplishing cross system activities requiring integration or standardization
	S2.10. Introduction of uncoordinated system change resulting in excessive oscillation

 Table 14: Systems of Systems VSM-derived Pathologies

Table 14 (cont.)

Operations	S3.1.	Imbalance between autonomy of productive elements and
(\$3)		integration of whole system
	S3.2.	Resource stability inconsistencies
	S3.3.	Mismatch between resources and productivity expectations
	S3.4.	Lack of clarity for responsibility, expectations, and
		accountability for performance
	S3.5.	Operational planning frequently pre-empted by emergent crises
	S3.6.	Inappropriate balance between short term operational versus
		long term strategic focus
	S3.7.	Lack of clarity of operational direction for S1s
	S3.8.	Difficulty in managing integration of system S1s
	S3.9.	Slow to anticipate, identify, and respond to environmental shifts
Monitoring (S3*)	S3*.1.	Limited accessibility to data necessary to monitor performance
	S3*.2.	System level performance indicators absent, limited, or
		ineffective
	S3*.3.	Absence of monitoring for subsystem and system level
		performance
	S3*.4.	Lack of analysis for performance variability or emergent
		deviations from expected performance levels
	S3*.5.	Performance auditing is non-existent, limited in nature, or
		restricted mainly to troubleshooting emergent issues
	S3*.6.	Periodic examination of system performance largely
		unorganized and informal in nature
	<u>S3*.7.</u>	Limited system learning based on performance assessments
Development (S4)	S4.1.	Lack of forums to foster system development and transformation
	S4.2.	Environmental scanning, interpretation, and processing are non- existent sporadic or limited in nature
	S4.3.	Absence of system representations or models to guide analysis
	S4 4	Processing and dissemination of environmental scanning results
		inconsistent or ineffective
	S4.5.	Long range strategic development is sacrificed for management
		of day to day operations - limited time devoted to strategic
		analysis
	S4.6.	Strategic planning/thinking focuses on operational level
		planning and improvement

Table 14 (cont.)

Learning and	S4*.1. Limited learning achieved related to environmental shifts
Transformation (S4*)	S4*.2. Integrated strategic transformation not conducted, limited, or ineffective
	S4*.3. Design for system learning informal, non-existent, or ineffective
Identity and policy (S5)	S5.1. Identity of system is ambiguous and does not effectively generate consistency system decision, action, and interpretation
	S5.2. System vision, purpose, mission, or values remain unarticulated, or articulated but not embedded in the execution of the system
	S5.3. Balance between short term operational focus and long term strategic focus is unexplored or lacks ability to guide decisions related to resource allocation
	S5.4. Strategic focus lacks sufficient clarity to direct consistent system development
	S5.5. System identity is not routinely assessed, maintained, or questioned for continuing ability to guide consistency in system decision and action
	S5.6. External system projection is not effectively performed

Furthermore, it appears that the concept of metasystem and metasystem pathologies might be relevant in dealing with supra-institutional issues that cross traditional organizational boundaries. Cornock (1977) suggests that working in isolation provides the right condition for the problem of "one man's 'solution' [to become] another man's 'problem'" (p. 738). Supra-institutional issues require an analyst to have a wider view which might be provided at a metasystemic level. Certainly, Churchman's (1971) comments

...it seems at least plausible to argue that 'verification' of a research project of a dialectical inquirer is not the establishment of a solution, but the creation of more knowledgeable political process in which the opposing parties are more fully aware of each other's <u>Weltanschuungen</u> [worldview] and the role of data in the battle for power. (p. 185)
seems to support a need for a higher logical view beyond any one system of interest. To this end, the problem formulation phase also is a logical candidate for a consideration for pathologies at the metasystem level.

This section has illustrated two critical points from the literature. First, metasystem plays a critical role in governance of complex systems. The concept of metasystem supports the systems idea of treating systems as interdependent systems (wholes) rather than completely independent systems capable of operating in isolation. Thus, a metasystem provides a governing structure that integrates autonomous complex systems (i.e., governed complex systems) to achieve functions, goals and missions beyond those of constituent systems. Second, the literature highlights a gap related to the extension of the concept of system pathologies to metasystem pathologies using systems theory. Metasystem pathologies are related to deficiencies and/or lack of adhering to metasystemic functions which find their basis in systems theory, as suggested from the examination of the literature. By extending the previously articulated logic of system function-based pathology to systems theory, a systems pathology might be defined as an inadequate use of systems theory (i.e., not recognizing unity of laws, principles, and theorems of systems theory) or violation of systems theory (i.e., ignoring laws, principles, and theorems of systems theory). Figure 11 is drawn as an integration of the literature to provide an emerging logic of systems theory-based metasystem pathology. This concept of might be used to identify metasystemic issues acting to limit expected growth, performance, sustainability, and viability of complex systems as part of problem formulation endeavors for systems-based methodologies.

Figure 11: An Emerging Construct for Systems Theory Metasystem Function-based Pathologies

2.2 LITERATURE CRITIQUE

This section discusses various segments presented in the synthesis of literature and provides shortcomings in the systems body of knowledge related to metasystem pathologies – and in the process establishes the particular gap which forms the focus for this research effort. First, the overarching message from synthesis of literature in this chapter is the utility that systems theory offers in dealing with complex system problems that plague society. There is overwhelming evidence that modern society systems operate under the conditions of ambiguity, complexity, emergence, interdependence, and uncertainty (Flood & Carson, 1993; Keating et al., 2014; Skyttner, 2005). Second, "In order to meet these challenges, approaches must be available for addressing and resolving these problems" (Crownover, 2005, p. 43). Third, a possible approach to addressing current challenges may be found in the body of knowledge of 'system(s).' This entails using systems theoretic laws, principles, and theorems that appear to govern all systems (Adams et al., 2014; Ashby, 1956; Hammond, 2002; von Bertalanffy, 1968).

A review of systems literature for systems-based methodologies indicates that there is no shortage of structured approaches that embraces ideas of systems. Such methodologies are systemic and recognize the complexity associated with 21st century problem systems which cannot be solved in isolation from the larger context and problem domain within which they are inextricably embedded. The tenets of 'systems' form the foundation for the systems-based methodological approaches and the holistic underpinnings upon which deployment of such methods depends (Flood & Carson, 1993; Jackson, 2003; Klir, 1977; Mason & Mitroff, 1981; von Bertalanffy, 1968).

A key feature of systems-based approaches is the need to formulate the problem. While the importance of problem formulation in understanding and the eventual development of problem resolutions are described in the systems literature, it appears that there is "lack of clarity as to what problem ...[formulation] is or how to do it" (Crownover, 2005, p. 30). Moreover, the complexity associated with the 21st century problem landscape appears to influence establishment of clarity in the phase of problem formulation. Dery (1984) indicates:

...whether we seize, set, define, discover, or formulate a problem, we are not certain of precisely what we are doing; nor is it obvious that we understand the object of such pursuits. (p. 14)

Nonetheless, failure to properly formulate problems has implications on overall success of system endeavors and failure in this critical phase might create the right

conditions for solving the wrong problem. However, this does not justify the lack of rigorous means that can be used to formulate problems for systems-based analysis.

Therefore, two critiques can be made regarding use of systems theory in problem formulation and identification of pathologies at the metasystem level. *First, problem formulation for systems-based approaches lacks rigorous and explicit linkage to the underlying systems theory upon which the approaches are assumed to be based*. The reviewed literature illustrates the importance of systems theory in development of systems-based approaches. The role of problem formulation and the underlying assumptions in systems-based approaches is also well-established in systems literature. However, literature on systems-based methodologies does not explicitly indicate how systems theory is used to enhance problem formulation, beyond some base level acknowledgement. It appears that the conceptual foundations of systems theory that form the basis for `systemic' thinking in systems-based methodologies is not clearly inculcated in the problem formulation phase.

Second, there is lack of focus on metasystemic pathologies during problem

formulation. The reviewed literature indicates that the concept of systems pathology offers an essential and yet untapped potential element for problem formulation. However, contemporary problem formulation activities do not appear to focus on identification of metasystem pathologies or the underlying systems theory from which they might be implicitly derived. Specifically, there is no discussion on how systems theory is used to inform problem formulation at the metasystem level. Dent's (2013) work, although written from a different perspective, appears to support these criticisms. Dent (2013) proclaims that users of systems theory appear to subscribe to a limited 'philosophical

assumptions' of systems theory and thus there remains a gap of realizing the full potential of systems theory. Table 15 is drawn to indicate research gaps associated with use of systems theory in problem formulation. These gaps indicate a need to more rigorously extend systems theory to the problem formulation phase of systems-based methodologies and to articulate metasystemic pathologies. This is the area of this research.

	lated to problem	səftinəbl məteyastem səigolodtaq												x	X
	it concepts re theory-based formulation	Explicitly linkage to Systems Theory													x
ies	Relevar systems 1	fo noitslusittA gnimert fo stuten	×	×	×	×		×	×	×		×	×	×	x
o Metasystem Patholog		Method for articulation of problems	Boundary Critique	Formulating the mess	Diagnosing the organization	Problem formulation	Process scanning	Entering problem situation	Perspective I	Problem definition	Exploratory research	Problem structuring	Creativity	System purpose/ system in focus	
15: Research Gaps Related to		bəssd-emətey2 ygolobodtəm	Critical Systems Heuristics	Interactive Planning	Organizational Learning	Strategic Assumption Surfacing and Testing	Sociotechnical Systems	Soft Systems Methodology	Systems of Systems Engineering Methodology	Systems Analysis	Systems Engineering	Systems Dynamics	Total Systems Intervention	Viable System Model	
Table		210AJUA.	(Ulrich, 1983, 1987)	(Ackoff, 1974, 1981a: 1981b, 1999)	(Argyris & Schön, 1978, 1996; Argyris, 1985)	Mason & Mitroff. 1981: Mitroff & Emshoff. 1979)	(Pasmore, 1988; Taylor & Felten, 1993; Trist & Bamforth, 1951)	(Checkland & Scholes, 1999; Checkland, 2000; Wilson, 1984)	(Adams & Keating, 2009. 2011; Keating et al., 2004)	(Atthill, 1975; Gibson et al., 2007)	(INCOSE, 2011: Blanchard & Fabrycky, 2006)	(Forrester, 1961; Senge, 1990; Sterman, 2000)	(Flood & Jackson, 1991; Flood, 1995; Jackson, 1991)	(Beer, 1979, 1981. 1985)	(Katina, 2015)

2.3 RESEARCH SETTING FOR METASYSTEM PATHOLOGIES CONSTRUCT

This section of Chapter II frames a research perspective for a construct development related to metasystem pathologies identification in support of the problem formulation phase of systems-based methodologies. The genesis for this Metasystem Pathologies Identification construct started in the broader examination of the role and importance of problem formulation in 'systems' ideas. In von Bertalanffy's (1968) work, it is suggested that when we view the world in terms of systems, there appear general laws, principles, and theorems that govern systems regardless of their particular differences. Fundamental to this view is that systems theory might be used to holistically address 21st century systems, and their derivative problems, despite the increasing ambiguity, complexity, interdependence, and uncertainty that define the present landscape.

The emphasis on the whole is a key element of systems theory. This emphasis is evident in von Bertalanffy's (1972) work where the examination of parts or systems in isolation is said to be incapable of yielding a complete picture of a phenomenon. In fact, Simon (1969) notes that current systems are so intricately woven that "the whole is more than the sum of parts,...given the properties of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole" (p. 86). This is in a sharp contrast to the reductionist-based approach where grasping reality is based on isolating systems (Hammond, 2002; Laszlo, 1996).

Apart from embracing the ideas of systems, systems-based methodologies have been developed to intervene and bring about positive change in real world situations. A fundamental aspect of such methodological approaches is problem formulation, which provides an initial entry into the problem space. Problem formulation has been referred as the "most critical stage" (Dery, 1984, p. 3), "most crucial part" (Rein and White, 1977, p. 131), and "most important routine" (Mintzberg et al., 1976, p. 276) and is routinely identified as critical to understanding and eventual system success. The purview of problem formulation spans an array of concepts including system pathologies. Borrowing from the medical field, the concept of pathology involves systemically understanding deep underlying circumstances, conditions, factors, patterns, or issues acting to limit system performance, or lessen system viability and growth, such that the likelihood of system achieving performance expectation is reduced (Beer, 1984; Keating & Katina, 2012; Ríos, 2012). Moreover, a key prevalent issue in systems ideas is holistic understanding. Therefore, this suggests that problem formulation phase might need to be undertaken in a holistic fashion. This might be pursued by ensuring focus on metasystem pathologies that exist beyond any single system of interest. This is also consistent with a fundamental idea of systems theory - understanding the whole rather than parts. Therefore, the literature has suggested: (1) the importance of problem formulation in dealing with complex systems and their associated problems, (2) the unique role of systems theory in providing a grounded theoretical basis for further development of problem formulation, and (3) the relatively unexplored utility of pathologies, related to systems theory, for explaining performance at the metasystem level.

This research suggests that relationship between systems theory and metasystem pathology is one that must be addressed in (re)thinking problem formulation phase of systems-based methodologies. *The perspective taken in this research was systems theory (i.e., laws, principle, and theorems) and perspectives on metasystem functions* based on management cybernetics (i.e., the science of effective organization) can be used to develop a construct for metasystem pathologies. Exploring this relationship might provide an explicit linkage between systems theory and problem formulation while considering pathologies at the metasystem level.

Finally, aspects of different discussions on topics of systems theory, complex systems, systems of systems, systems-based methodologies, problem formulation phase, and metasystem pathologies were essential in establishing a need for a metasystem pathologies identification (MPI) construct. The literature has been coalesced to provide and support the construct as an organizing structure for drawing relationships across a seeming disparate body of knowledge. Moreover, before moving into development of the construct, it was necessary to establish a research perspective on metasystem pathologies. This perspective is drawn from and consistent with the supporting literature for the research and offered as a critical point of departure for grounding further exploration:

- A metasystem pathology is a circumstance, condition, factor, pattern, or issue that acts to limit system performance, or lessen system viability and growth at the metasystem level.
- A metasystem pathology emerges out of inadequacy associated with the use of systems theory which might be expressed as lack of use of laws, principles, and theorems of systems theory or a direct violation of laws, principles, and theorems of systems theory.
- Moreover, a metasystem pathology does not have one correct interpretation.
 Even if there is agreement on the 'existence' of a pathology, the interpretations concerning the source and meaning will not necessarily be

congruent among observers. Thus, the idea of system pathology embraces systems theoretic principle of complementarity.

- Metasystem pathologies are also dependent on systems and observer perspective. Thus, a pathology cannot exist in absence of attribution from an observer. Therefore, there is no pathology independent of system observers.
- Metasystem pathologies include internal factors and external factors acting to limit system performance, or lessen system viability and growth at the metasystem level.
- Metasystem pathologies also include organizational structures, policies, activities, or decisions that may hinder systems development, viability, or growth.
- A metasystem pathology is directly drawn from *violation of essential metasystem functions*. To enable system viability, systems theory is the basis for developing system functions at the metasystem level. Consequently, violations of systems theory affect metasystem functions.
- Moreover, in order to perform metasystem functions, there is a need to have effective and efficient mechanisms. *Deficiencies in such mechanisms* also create pathological conditions inhibiting system performance and viability.

2.4 CHAPTER SUMMARY

This chapter developed the literature review to support this dissertation research. Synthetized literature discussed the importance of systems theory in relation to the reductionist approach of the traditional 'scientific method.' The role of 'systems' approach in promoting holistic thinking in systems-based methodologies is also discussed in relation to intervening in 21st century problematic conditions.

A critical analysis of the literature was then given pointing out the importance of problem formulation in systems-based methodologies. This analysis suggested a lack of explicit use of systems theory in problem formulation as well as a lack of focus on identifying metasystem pathologies. Lastly, a research setting was developed to show how systems theory and management cybernetics was being used in this research to enhance problem formulation phase. The chapter concludes with developing a grounding perspective for the research on metasystem pathologies. Chapter III expands on these ideas by providing underpinnings for a method that might be used to develop a construct for identifying metasystem pathologies; namely, the Grounded Theory Method and a method that might be used for initial 'face' validation of the developed construct of metasystem pathologies; namely, the Case Study Method.

CHAPTER III: PERSPECTIVE OF THE RESEARCH

The purpose of this chapter is to establish a clear and common basic research paradigm and its impact on the research efforts. The chapter presents two major paradigms of research and establishes the philosophical underpinnings that form the basis for conducting this research. Methods that can be used to gain knowledge within the selected paradigm are then discussed across philosophical underpinnings of methodological, epistemological, ontological, and human nature dimensions of research. The chapter also discusses rationale for selection of grounded theory and mixed case research design as well as their associated concerns and means for mitigating those concerns. Figure 12 is drawn to depict the organization of this chapter.

Figure 12: Organization Diagram for Chapter III

3.1 RESEARCH PARADIGMS

The importance of establishing a research paradigm is prevalent in the literature (Bateson, 1972; Burrell & Morgan, 1979; Churchman, 1968; Flood & Carson, 1993; Denzin & Lincoln, 1994). This section of the research elaborates on the research paradigm that underlies the design, execution, and interpretation of the research. In essence, a research paradigm is taken as a particular worldview that informs the conduct of research. Central tenets of research paradigm have been captured as:

- a world view, a general perspective, a way of breaking down the complexity of the real world (Patton, 1990)
- an interpretative framework, guided by a particular set of beliefs and feelings concerning how the world should be studied and understood (Guba, 1990).

Therefore, at the most fundamental level, the heart of any rigorous research is the need to establish a paradigm for contrasting knowledge claims. Typically, knowledge claims are established along two contrasting ends of a spectrum. At one end of this spectrum, we have the traditional scientifically-based research paradigm for advancing knowledge in natural sciences (Denzin & Lincoln, 1994; Flood & Carson, 1993). On the other end, we have a renewed call for social inquiry from a social science perspective (Churchman, 1971; Flood & Carson, 1993). In a traditional model of scientific research, the researcher "initially requires reduction; singling out a portion of reality ...set[s] a hypothesis about this portion of reality...design[s] an artificial situation where this small number of variables can be investigated while the remainder are held constant. Experimental design is important, with the experiment purposely devised to test the hypothesis with the aim of refutation. Knowledge accrues from this method" (Flood & Carson, 1993, p. 249). In effect, this perspective represents the positivist perspective of knowledge as being absolute, objective, and confirmable.

Conversely, a researcher may focus on the social science perspective, the interpretive or naturalistic paradigm, where deeper understanding of reality and meaning of phenomena are subjective rather than being based on hypothesis, cause and effects (Creswell, 2009; Lincoln & Guba, 1985; Patton, 2002). Consequently, the basic difference between these paradigms can be described in terms of deduction - theory

testing (Abraham, 1936; Leedy & Ormrod, 2010) and induction - theory building (Feibleman, 1954; Lipton, 2002; Robinson, 1951). Figure 13 is drawn to illustrate the basic underlying differences in two research paradigms.

These contrasting ideas form the basis for a long standing debate on reality and knowledge (Guba, 1990; Johnson and Onwuegbuzie, 2004; Patton, 2002). This debate continues as unsettled and is beyond the purpose of this research. However, the following remarks can be used to provide the essence of this long standing debate (Patton, 2002):

In its simplest and most strident formation, this debate has centered on the relative value of two different and competing inquiry paradigms: (1) using quantitative and experimental methods to generate and test hypotheticaldeductive generalizations versus (2) using qualitative and naturalistic approaches to inductively and holistically understand human experience and constructed meanings in context-specific settings. (p. 69)

Figure 13: Two Major Paradigms of Research

To this end, it was necessary to establish the paradigm for this research. The paradigm for this research draws on the preceding chapters, especially the research questions in Chapter I and the developed perspective on nature of metasystem pathologies as articulated in Chapter II. It also helped establish "a set of ideas, a framework (theory, ontology) that specifies a set of questions (epistemology), which are then examined (methodology, analysis) in specific ways" (Denzin & Lincoln, 2000, p. 11). Moreover, Bateson (1972) argues that as one conducts research, one is "bound within a net of epistemological and ontological premises which – regardless of the ultimate truth or falsify – become partially self-validating..." (p. 314).

Therefore, the researcher had to develop an informing perspective for this research. Four philosophical underpinnings of methodology, epistemology, ontology, and nature of human beings as described by Burrell and Morgan (1979) and extensions of Flood and Carson (1993) are the basis for the research perspective developed to inform a paradigm for this research. Each of the philosophical dimensions exists along two extremes of subjectivity (induction) and objectivity (deduction). These dimensions are often used to shape the direction, interpretation, and the outcome of the research (Bradley, 2014; Calida, 2013; Crownover, 2005). The following section discusses the four dimensions of research paradigm and their implications for this research.

3.1.1 Methodological Perspective

A methodological aspect of research describes the means by which the researcher attempt to understand, investigate, and gain knowledge in the world. Flood and Carson (1993) establish that methodology deals with the way a researcher "attempts to investigate and obtain knowledge about the world in which we find ourselves" (p. 247). Extrapolating from Burrell and Morgan's (1979) work, Flood and Carson (1993) also suggest that there are two opposite extremes of methodology: nomothetic and idiographic. A *nomothetic* perspective of methodology is undertaken when a researcher is interested in "analyz[ing] relationships and regularities between the elements of which the world is composed; the concern is the identification of the elements and the way relationships can be expressed. The methodological issues are concepts themselves, their measurement, and identification of underlying themes. In essence, there is search for universal laws that govern the reality that is being observed. Methodologies are based on systematic process and technique" (pp. 247-248). This approach supports a quantitative, or positivist worldview where the researcher tests a theory (Creswell, 2009; Leedy & Ormrod, 2010).

However, as expressed in Chapters I and II of this research, the researcher was interested in building a theory (construct). Therefore, the dimension of methodology directed toward building theory was needed. This is supported under the *idiographic* dimension, which assumes that "one can only understand the social world by obtaining first-hand knowledge of the subject under investigation. It thus places considerable stress upon getting close to one's subject and exploring its detailed background and life history" (Burrell & Morgan, 1979, p. 6). Under this dimension, Flood and Carson (1993) suggest that the researcher's "principal concern is to understand the way an individual creates, modifies, and interprets the world" (p. 248). Thus, in this respect the researcher must be willing to develop "situation-specific meanings" (Schwandt, 1994, p. 118) in the research drawn from an immersive and interpretative engagement with the research data.

Following the research questions in Chapter I and discussions on systems theory, complex systems, systems of systems, systems-based methodologies, and systems pathology in Chapter II, an ideographic approach to methodology was considered necessary to support the aims of the research. This is consistent with a systemic view of social aspects of reality, including 21st century problems that can neither exist in isolation

nor be understood in isolation (Capra, 1997; Hammond, 2002; Laszlo, 1996; von Bertalanffy, 1972) from the context within which they are embedded. Additionally, the complexity associated with the phenomenon under study and participants in the case study aspects of the research suggest, "objectives are unclear, some important variables are unquantifiable, and the analysis will necessarily have to include examining the value systems underlying the various possible objectives" (Checkland, 1985, p. 155). Furthermore, values may be "implicit and most probably incomplete and conflicting" (Gibson et al., 2007, p. 63), requiring a 'systemic,' subjective, and interpretive approach as most appropriate to respond to the research questions.

A rigorous interpretative approach is consistent with qualitative research where subjectivity is a key element (Glaser & Strauss, 1967; Strauss & Corbin, 1990). In this present research, subjectivity is demonstrated in participant's views of pathological conditions as suggested by Dery (1984). Therefore, "a problem [or pathology] is not the same for all interested parties" (Becker, 1966, p. 7) and might even not be the same to all "disinterested parties, or even to the same researcher" (Dery, 1984, p. 25). A nomotheticobjective stance is not appropriate for this research, since knowledge of pathologies is subjective and dependent on the different perspectives of those experiencing a particular pathology.

It is noteworthy to establish that a qualitative research design supports the inductive paradigm and "begins not with a preestablished truth or assumption but instead with an observation...people use specific instances or occurrences to draw conclusions about the entire classes of objects or events. In other words, they observe a sample and then draw conclusions about the population from which the sample has been taken"

(Leedy & Ormrod, 2010, p. 33). Similar to Gioia & Pitre's (1990) view of methodology, this research is concerned with "coherent description, or explanation of observed or experienced phenomena...the process or cycle by which such representations are generated, tested, and refined" (Gioia & Pitre, 1990, p. 587). Consequently, this research considers concepts underlying metasystem pathologies as new, unique, and particular to each situation. As such, attempts to investigate and obtain knowledge in such cases have to include notions of subjectivity. Table 16 is drawn to list different qualitative methodologies and their appropriateness in support of this research. The research methodology section (Chapter IV) - including the case study application and the results section of this research (Chapter V) attest to this aspect of research.

		ia fil Jeicului
Methodology	Descriptions	Fit Selection
Ethnography	"a strategy of inquiry in which the researcher	Not suitable for development of a systems-based
	studies an intact cultural group in a natural setting	construct for metasystem pathologies. The data
	over a prolonged period of time by collecting.	being applied in developing construct are
	primarily, observational and interview data. The	literature. This appears to contradict James
	research process is flexible and typically evolves	Spradley's 12 step method applicable in
	contextually in response to the lived realities	ethnographic studies (Spradley, 1979)
	encountered in the field setting" (Creswell, 2009, p.	
	13)	
Grounded Theory	"a strategy of inquiry in which the researcher	Does support inductive development of theory
	derives a general, abstract theory of a process,	and construct from data. Thus suitable for first
	action, or interaction grounded in the views of	part of this research (constant comparison of
	participants. This process involves using multiple	data allowing for related concepts and categories
	stages of data collection and the refinement and	related to metasystem pathologies to emerge)
	interrelationship of categories of information. Two	
	primary characteristics of this design are the constant	
	comparison of data with emerging categories and	
	theoretical sampling of different groups to maximize	
	the similarities and the differences of information"	
	(Creswell, 2009, p. 13)	
Case Studies	a strategy of inquiry in which the researcher	Suitable for the second part of this research
	explores in depth a program, event, activity, process,	where the interest is to provide a face validation
	or one or more individuals. Cases are bounded by	of the proposed metasystem pathologies in real
	time and activity, and researchers collect detailed	world settings
	information using a variety of data collection	
	procedures over a sustained period of time (Creswell,	
	2009, p. 13)	

Table 16: Qualitative Research Methods and Fit Selection

Phenomenological	"a strategy of inquiry in which the researcher identifies	Not suitable since the researchers'
Research	the essence of human experiences about a phenomenon as	perspective especially in development
	described by participants. Understanding the lived	of the construct and extended
	experiences marks phenomenology as a philosophy as well	understanding of systems theory and
	as a method, and the procedure involves studying a small	problem formulation are included in
	number of subjects through extensive and prolonged	the research
	engagement to develop patterns and relationships of	
	meaning. In this process, the researcher brackets or sets	
	aside his or her own experiences in order to understand those	
	of the participants in the study" (Creswell, 2009, p. 13)	
Narrative Research	"a strategy of inquiry in which the researcher studies the	Not suitable for this research. The
	lives of individuals and asks one or more individuals to	researcher was not concerned with
	provide stories about their lives. This information is then	neither 'tales from the field,' 'tales of the
	often retold or restoried by the researcher into a narrative	field,' no subscribe to ideas of
	chronology. In the end, the narrative combines views from	chronology or 'participant's life' as
	the participant's life with those of the researcher's life in a	suggested in Patton (2002)
	collaborative narrative" (Creswell, 2009, p. 13)	
Ethology	Ethology is the biological study of behavior (Merriam-	Not suitable for this research. The
	Webster, 2006). This approach emphasizes observing	approach does not support inductive
	subjects (typically animals) under more-or-less natural	development of constructs
	conditions, with the objective of understanding the	
	evolution, adaptation (function), causation, and development	
	of the species-specific behavioral repertoire. A typical	
	approach to this method includes (1) identifying the	
	behavior to be studied, (2) identifying the study population,	
	(3) select participants, (4) collecting data by observing	
	subjects in their natural environment, and (5) analyzing data	
	(Gay & Airasian, 2002)	

Table 16 (cont.)

-
· ·
•
_
~
· · ·
_
\sim
_
10
~
_
<u> </u>
n x
~
~
•
_
·
~~
*

(cont.)	oryParticipatory Action Research differs from other forms of qualitative research in that the research is conducted by the participants and the results are used directly to address the problems of the participants (Wadsworth, 1998; Whyte,Not suitable for this research. The approach does not support inductive development of constructs. It could support the second of the research of 1943; 1991)
Table 16 (cont.)	Participatory Action Research

3.1.2 Epistemological Perspective

An epistemological aspect of research deals with how a researcher (i.e., a system observer) begins to understand problematic situations and communicate knowledge to fellow researchers or observers. This dimension provides the form of knowledge, how knowledge is acquired, and what is considered to be 'true' or 'false' (Burrell & Morgan, 1979). There are two opposite extremes of epistemology: positivism and anti-positivism. A *positivistic* approach to research indicates that "knowledge is hard, real, and capable of being transmitted in a tangible form" (Flood & Carson, 1993, p. 247). This stance of epistemology supports the idea that it is possible to "explain and predict what happens in the social world by searching for regularities and causal relationships between its constituent elements...[and] that the growth of knowledge is essentially a cumulative process in which new insights are added to existing stock of knowledge and false hypotheses eliminated" (Burrell & Morgan, 1979, p. 5).

In contrast to positivism, the *anti-positivism* approach to research opposes positivism's view of knowledge as a hard, concrete, and tangible. This approach does not search for "laws or underlying regularities in the social affairs...[but supports] that one can only 'understand' by occupying the frame of reference of the participant in action" (Burrell & Morgan, 1979, p. 5). In anti-positivism, "knowledge is soft, more subjective, spiritual, or even transcendental – based on experience, insight, and essentially of a personal nature" (Flood & Carson, 1993, p. 247).

The researcher, well-aware of scarcity of literature supporting explicit use of systems theory in problem formulation and concepts of metasystem pathology, sided with the anti-positivistic view of knowledge. This research supports the notion that knowledge on the topic of metasystem pathologies is subjective and based on individual experiences – as articulated in literature of participants. Certainly, this is the case when "…people hold different views on (a) whether there is a problem [or metasystem pathology], and if they agree there is, (b) what the problem [metasystem pathology] is" (Vennix, 1996, p. 13). Certainly, a successful development of a construct for metasystem pathology identification and testing of the construct's ability to articulate metasystem pathologies requires an anti-positivistic perception of pathological knowledge – knowledge about metasystem pathology is socially constructed.

3.1.3 Ontological Perspective

An ontological aspect of research deals with existence of entities and how such entities can be grouped based on similarities and differences. Moreover, ontology can also describe how "an observer views the nature of reality or how concretely the external world might be understood" (Katina et al. 2014a, p. 49). Two opposite extremes of ontology are realism and nominalism. Based on Burrell and Morgan (1979) and extrapolations from Flood and Carson (1993), *realism* is captured as "external to the individual imposing itself on individual consciousness; it is a given 'out there'" (p. 247). Realism suggests that reality is objective in nature. On the other hand, *nominalism* describes reality as a product of individual consciousness. More significantly, nominalism ascribes to the assumption of individual cognition. Under nominalism, Burrell and Morgan (1979) note that "the social world external to individual cognition is made up of nothing more than names, concepts and labels which are used to structure reality" (p. 4). The utility of `concepts,` 'labels,' and 'names,' is based on the convenience they offer as tools that can be used to make sense and describe reality (Flood & Carson, 1993).

In this research, a nominalistic view of the nature of reality informs the nature, development, and interpretation of metasystem pathologies. This is necessary since the idea of metasystem pathology identification construct are emerging and the constituent systems theory-based pathologies are partially dependent on cognition of observers – especially the ideas of 'existence' and 'consequences' of pathologies as later articulated in the case application of the developed construct.

3.1.4 The Nature of Human Beings

A final dimension of research paradigm is the nature of human beings. This aspect is essential since it provides a stance on man and his activities in society. It has been suggested that two opposite extremes of *determinism* and *voluntarism* can describe the nature of human beings (Burrell & Morgan, 1979; Flood & Carson, 1993). A *deterministic* view of human beings suggests that a researcher views human beings as "mechanistic, determined by situations in the external world; human beings and their experiences are products of their environment; they are conditioned by external circumstances" (Flood & Carson, 1993, p. 247). On the other hand, *voluntarism* suggests that human beings are "completely autonomous and free-willed" (Burrell & Morgan, 1979, p. 6) and therefore they have a "creative role [in their environment] and [can] create their environment" (Flood & Carson, 1993, p. 247). Burrell and Morgan's (1979) research also indicates that to the extent that social theories are concerned with human activities, a theory must be disposed to either implicitly or explicitly to one these viewpoints or an intermediate that can used to address human activities. Given the nature of the research objectives and the descriptions of the nature of human and his activities, *the researcher felt that it was necessary to view human beings as voluntaristic. This suggests, for example, the need to account for different views when identifying the degree of existence of systems theory-based pathologies.* Making this point explicit allows for the influence of voluntaristic nature of humans to shape research design, the activities involved, and interpretation of research results, particularly the case application.

In Chapter I, the purpose of the research was presented. Fulfillment of this purpose will produce a construct for metasystem pathologies within the selected research paradigm. The research paradigm does not suggest that, regardless of design and execution rigor, the emergent construct will define absolute truth concerning metasystem pathologies. This is consistent with selection of Grounded Theory Method. In fact, Goulding (1999) states that "grounded theory will not appeal to the researcher in search of absolute certainties, neatly defined categories and objectively measured explanations" (p. 19). Figure 14 is drawn to illustrate the line of demarcation for this research along the dimensions of methodology, epistemology, ontology, and nature of human beings. This distinction is important, as it establishes the frame of reference, within which the research design and execution is planned, executed, and appropriately interpreted.

Figure 14: Research Perspectives and their Dimensions

3.2 GROUNDED THEORY METHOD

In this section, the Grounded Theory Method, selected for conducting this research, is introduced. As will be established, the Grounded Theory Method aligns with a more subjective, interpretivist, and qualitative paradigm of social sciences. This research stance is consistent with the developed perspective on metasystem pathologies and congruent with the tenets of the research paradigm articulated for this research. Grounded theory is one of the qualitative research methodologies supportive of the idiographic dimension of methodological perspective in the research paradigm. This method has been widely used when researchers are interested in building theoretical constructs (Glaser & Strauss, 1967; Strauss & Corbin, 1990).

The ultimate output of this method is a grounded theory. A grounded theory is discovered, developed, and verified within a dataset from which it emerges. Thus, Strauss and Corbin (1990) could declare that a grounded theory is a theory "that is inductively derived from the study of the phenomenon it represents" (p. 23). First developed in the

1960's by two sociologists (Barney Glaser and Anselm Strauss), the Grounded Theory Method operates in a reverse mode to the traditional scientific mode of research where a hypothesis is first proposed for a phenomenon (Allan, 2003; Glaser & Strauss, 1967; Strauss & Corbin, 1990). In grounded theory, a researcher does not begin with a theory and then attempt to 'prove' or 'disprove' it. Rather, research begins with data collection in a relevant area of study. The researcher then allows the data to drive the research until a theory (construct) emerges (Glaser, 1992; Moghaddam, 2006; Strauss & Corbin, 1990). This method is suited for researchers who "believe that the development of theoretically informed interpretations is the most powerful way to bring reality to light...and believe that theories represent the most systematic way of building, synthesizing, and integrating scientific knowledge" (Strauss & Corbin, 1990, p. 22).

As a methodology, grounded theory emerged as a response to what Glaser and Strauss (1967) called a "trend toward emphasizing verification" (p. 10) where it was widely accepted that "our 'great men' forefathers (Weber, Durkheim, Simmel, Marx. Veblen, Cooley, Mead, Park, etc.) had generated a sufficient number of outstanding theories on enough areas of social life to last for a long while" (Glaser & Strauss, 1967, p. 10). The next job was therefore, the applications and modifications of the already generated theories. However, with the passing of time, some researchers began to realize that the 'great men' had "not provided enough theories to cover all areas of social life" (Glaser & Strauss, 1967, p. 11). Even more troubling was the lack of methods for generating theories from data. Glaser and Strauss (1967) contended that "some theories of our predecessors, because of their lack of grounding in data, do not fit, or do not work, or are not sufficiently understandable to be used and are therefore useless in research, theoretical advance and practical application" (Glaser & Strauss, 1967, p. 11). Therefore, Glaser and Strauss set out to develop methodology that "enables discovery of theory from data" (Glaser & Strauss, 1967, p. 1) using processes of comparative analysis to generate conceptual categories that can be used to predict, explain, interpret, and apply in different settings (Goulding, 1999).

In Chapter II, it was indicated that there is a lack of explicit use of systems theory and identification of systematic pathologies during the problem formulation phase of systems-based methodologies. Given the essence of the Grounded Theory Method, there is a match to the purpose of this research. Consequently, the idea of attempting to establish possible relationships between *systems theory* and *problem formulation* to articulate *metasystem pathologies* fits within the scope of the Grounded Theory Method. Additionally, Egan (2002) established that the Grounded Theory Method is appropriate when little to nothing is known about the phenomena of interest. As indicated in Chapter II, there is scarcity of literature describing how systems theory is related to problem formulation especially at the metasystem level. Therefore, the researcher selected the Grounded Theory Method because of (1) its ability to help develop grounded theoretic constructs that makes the relationship between systems theory and problem formulation more explicit and (2) a grounded construct can help in inductive development and articulation of systems theory-based as well as metasystem pathologies.

The term theory in 'grounded' theory has a specific, and yet, broad meaning. Strauss and Corbin (1990) suggest that the term 'theory' is best described when contrasted to yet another term - *description*. They suggest that while the term 'theory' can be described in terms of a *set of related concepts that propose a reasonable explanation* *to explain a phenomena under study*. a 'description' might only provide themes and summaries of data with "little, if any, interpretation of data" (Strauss & Corbin, 1990, p. 29). Morse's (1994) definition enhances this view of theory when she writes that theory provides "the best comprehensive, coherent and simplest model for linking diverse and unrelated facts in a useful and pragmatic way" (p. 25). In this instance, a theory enables making the implicit relationships or links explicit using a variety of mechanisms including questions (Goulding, 1999). Therefore, the idea of developing a construct, metasystem pathologies identification, that helps explain how systems theory can be used to enhance problem formulation including at the metasystem level, is within the scope of the Grounded Theory Method.

Rather than a theory, this research uses the term 'construct' to project the idea that the discovered relationship, between systems theory and problem formulation - in terms of systems theory-based and metasystem pathologies, may have to go through several revisions before reaching a maturity level expected for a well-established theory. Needless to say, the developed construct is "a set of well-developed categories (e.g., themes, concepts) that are systematically interrelated through statements of relationship to form a theoretical framework that explains... [systems theory-based pathologies in complex systems]" (Strauss & Corbin, 1998, p. 22).

The Grounded Theory Method is not restricted for use in a particular research domain. In fact, one of the original developers of the method notes that "Grounded theory is a general method. It can be used in any data or combination of data" (Glaser, 1999, p. 842). Moreover, Strauss and Corbin (1990) proclaim that "One need not be a sociologist or subscribe to the interactionist perspective to use it. What counts are the procedures and they are not discipline bound" (p. 26). Since its introduction in the 1960s, grounded theory "has gradually spread beyond its initial concentration, and ... is making inroads into other practical fields and other disciplines" (Dey, 1999, p. 13).

In this research, the researcher selected the Grounded Theory Method as a viable approach for developing a construct for metasystem pathology identification. *This selection is largely based on the researcher's initial methodological, epistemological, and ontological perspectives on the topic of research.* Literature is replete with different applications and utility of the Grounded Theory Method. However, the Grounded Theory Method is not without criticism.

3.2.1 Criticisms of the Grounded Theory Method

Just like any other approach, the Grounded Theory Method is with by no means faultless and without criticisms. Thus, the purpose of this section is to articulate criticisms associated with grounded theory research method and their impact on the research. A subsequent section, Section 3.4 of this chapter, identifies specific strategies for mitigating such criticisms. Since its inception, the Grounded Theory Method has encountered noteworthy criticisms. In a large part, these criticisms emerged due to the founders' attack on well-established 'logico-deductive' approaches (Crownover, 2005) as well as confusion brought by the method founder's use of 'positivistic' language (Keddy, Sims, & Stern, 1996). In fact, Keddy et al. (1996) posits that the founders of Grounded Theory Method "used the language of positivism: variables, hypothesis, properties, theoretical sampling, theoretical ordering, and so on. It is often this discourse that causes the frustration for the qualitative researcher" (p. 450). Their major criticisms appear to be at the forefront of challenges for grounded theory as a viable approach to conducting rigorous research.

One of the recent criticisms of the Grounded Theory Method is the question of 'theory' being a product of application of the method. Thomas and James (2006) write, "The 'theoretical' notion in grounded theory, in other words, conflates and confuses two processes in inquiry. It conjoins the spark to inspiration...with the predictive function of theory in the natural sciences and in functionalism. For describing what happens in qualitative research, the use of the term 'theory' only confuses what is going on. The former type – involving tacit patterning, interpretation and inspiration – really a vernacular employment of the term...and is part of everyday reasoning...The latter is about generalization following systematic and extensive data collection, and the testing of the generalization following systemic and extensive data collection, and the testing of the generalization for the purposes of verification or falsification" (p. 772). The first part of this criticism suggests that what Glaser and Strauss (1967) call 'theory' is simply everyday common knowledge. Glaser and Strauss would clearly object to this idea since their grounded theory has to be discovered "from data systematically obtained from social research" (p. 2).

In this research, the researcher was interested in generating a construct for metasystem pathologies based on the analysis of an extensive dataset as indicated in Chapter IV. The developed construct (theory) and the derived systems theory-based pathologies as well as clusters of metasystem pathologies are grounded in a variety of the dataset describing various laws, principles and theorems of systems theory.

Thomas and James's (2006) second criticisms has to do with the utility of the developed grounded theory. They argue that there is need to test and verify the developed theories. This criticism appears to be supported by earlier research. Specifically, Keddy et al. (1996) suggested that the language used in original text on grounded theory seems to suggest that the method is positivistic and therefore subject to traditional quantitative canons of verification. However, when the Grounded Theory Method was first introduced as a research method, the purpose was "to build theory that is faithful to and illuminates the area under study" (Strauss & Corbin, 1990, p. 25). There was a lack of theories and means to develop grounded theories. Moreover, Glaser and Straus's (1967) work clearly states: "While verifying is the researcher's principal goal and vital task for existing theories, we suggest that his main goal in developing new theories is their purposeful systematic generation from the data of social research.... Thus, generation of theory through comparative analysis both subsumes and assumes verification, and accurate descriptions, but *only* to the extent that the latter are in the service of generation" (p. 28). Additionally, the very selection and the application of the Grounded Theory Method "forces the analyst to verify and saturate categories" (Glaser, 1978, p. 58) because "While coding we are constantly moving between inductive and deductive thinking. . . There is a constant interplay between proposing and checking. This back and forth movement is what makes our theory grounded!" (Strauss & Corbin, 1990, p. 111). Furthermore, researchers employing this method "do not follow the traditional quantitative canons of verification. They do, however, check the development of ideas with further specific observations, make systematic comparison and often take the research beyond the initial confines of one topic or setting" (Goulding, 1998, p. 55).

Therefore, in this research, verification is maintained within the dataset used for the development of metasystem pathology identification construct and the derived systems theory-based pathologies using procedures of open, axial, and selective coding. Moreover, the researcher took measures to provide a 'face' validation of the articulated systems theory-based pathologies through a case application as indicated in Chapter IV.

A second shortcoming of grounded theory is the *failure for researchers to go* beyond what appears to be simple surface data analysis. Benoliel (1996) claims that a grounded theory should "explain how social circumstances could account for behaviors and interaction of people being studied" (p. 413). This criticism has been brought against the Grounded Theory Method because it appears that many researchers fail to "analyze data fully and especially to develop more abstract 'conceptual and theoretical codes'...[that form] the building block of theory" (Dey, 1999, p. 14). To be clear, Glaser and Strauss (1967) suggested that the Grounded Theory Method is defined as "the discovery of theory from data" (p. 2). The researcher is responsible for data collection and sense-making through the process of coding. A researcher is encouraged to use "constant comparative method of joint coding and analysis ... to generate theory more systemically than allowed by ... explicit coding and analytic procedures" (Glaser, 1965, p. 437). Four stages of this grounded theory (i.e., comparing incidents applicable to each category, integrating categories and their properties, delimiting the theory, and writing the theory) enable a researcher to go through a "continuous growth process – each stage after a time transforms itself into the next – previous stages remain in operation throughout the analysis and provide continuous development to the following stage until

the analysis is terminated" (Glaser, 1965, p. 439). Failure to follow these foundational process might result in "fail[ure] to transcend an initial 'in vivo' coding and ...fail[ure] to move beyond the face value of their data" (Dey, 1999, p. 14).

In this research, conceptual and theoretical codes for systems theory-based pathologies as well as the subsequent metasystem pathologies identification construct were developed based on the systems theory the dataset. The researcher developed and used several tools to ensure that theory (construct) was consistent with the dataset as well as intent of the research.

A related issue that forms another criticism of grounded theory is use of preconceived notions. The use of the Grounded Theory Method suggests that the researcher lets a theory emerge from the data. Thus, the researcher relies on his/her theoretical sensitivity to recognize important concepts pertinent to the research and his/her ability to give meaning to data (Glaser, 1978; Strauss & Corbin, 1990). The researcher is assumed to limit the use of pre-conceived notions. In other words, a researcher is urged to have "as few predetermined views as possible, especially logically deduced, prior hypotheses" (Urquhart, 2002, p. 49). It turns out that there is a divide between Glaser and Strauss on the issue of theoretical sensitivity.

The seminal work of Glaser and Strauss (1967) suggested that theoretical sensitivity is accomplished when a researcher identifies an 'emerging' theory from data without use of pre-conceived theories or hypotheses. In a later work, Glaser (1978) refers to 'theoretical coding' as means to 'conceptualize how the substantive codes [codes developed ad-hoc during 'open coding' – the first stage of the coding process and relates to the empirical substance of the research area] may relate to each other as hypotheses to

be integrated into a theory" (Glaser, 1978, p. 72). Theoretical codes emerge from "cues in the data" and can work to "weave the fractured story back together again" (Glaser, 1978, p. 72). However, Strauss and Corbin's (1990) work on 'theoretical sensitivity' suggests that coding should be based on a pre-selected theoretical perspective (Kelle, 2005) or a "coding paradigm" (Strauss, 1987, p. 28). A coding paradigm, which consists of four items (i.e., 'conditions,' 'interactions among the actors,' 'strategies and tactics,' and 'consequences'), is the essential piece that enables the researcher to structure data and clarify codes and their relationships (Kelle, 2005; Strauss & Corbin, 1990; Strauss, 1987). Thus, on one hand, the Glaserian approach encourages having as little preconceived concepts as possible on the area of study (Glaser, 1992, p. 22) while the Straussian approach advocates for use of guides that may enhance understanding (Walker & Myrick, 2006). The Straussian approach is appealing. A researcher is able to develop a grounded theory "without taking the risk of drowning in the data" (Kelle, 2005, p. 7) because of use *a priori* guiding frame of reference. However, the researcher must acknowledge possible limitations associated with use of a priori knowledge especially if the research is exploratory (inductive) rather than deductive (Glaser, 1992; Kelle, 2005). On the other hand, Glaser's (1992) criticism of Strauss and Corbin's 'coding paradigm' suggest that a researcher might 'force' categories into data rather than letting categories to 'emerge' from the data appears to have merit. Glaser (1992) goes as far as suggesting "not to review any of the literature in the substantive area under study" (Glaser, 1992, p. 22). However, this does not mean a researcher has to develop a grounded theory from a clean slate. In fact, Urguhart (2002) reminds researchers that "The 'tabula rasa' idea remains a popular misconception about GTM [Grounded Theory Method]...there is nothing in the
GTM literature that specifically precludes looking at relevant literature before entering the field" (p. 50).

Regardless of this criticism, both perspectives recognize the importance developing a theory from data. Moreover, a researcher is encouraged to "mix the two approaches with caution, aware that they may violate philosophical underpinnings of both; boundaries between the two should be maintained rather than a synthesis attempted" (Heath & Cowley, 2004, p. 147). Furthermore, it appears that the Glaserian approach "presents a wider range of perspectives on data than [Straus and Corbin's approach of] the coding paradigm" (Dey, 1999, p. 107). Cleary, the use of initial literature review to provide a guide for theoretical sensitivity for this research fits within the frames of the Grounded Theory Method. Moreover, a *variety of mechanisms – including personal and professional experience, and the analytical process itself* (Strauss & Corbin, 1990) could be used to enhance the theoretical sensitivity of the research.

This provides a convenient place to remind the reader that the researcher took a constructivist-subjective approach to grounded theory. The subjective perspective of grounded theory "assumes emergent, multiple realities, indeterminacy; facts and values as linked; truth as provisional; and social life as processual" (Charmaz, 2006, pp. 126-127) and as such, the researcher "sees both data and analysis as created from shared experiences and relationships with participants and other sources of data" (p. 130). By taking this perspective, the researcher assumes to develop a general metasystem pathology identification construct that respects specific situations and context from which different pathological conditions might emerge. However, the above criticisms appear to

suggest that the Grounded Theory Method is not suitable as a research approach. In fact, Bryant (2002) writes, "Given the foregoing discussion, why not simply jettison GTM [Grounded Theory Method] in its entirety? The weaknesses of GTM [Grounded Theory Method] are evident" (p. 34). The response is simple: "the strengths of the methodology far outweigh its shortcomings" (Crownover, 2005, p. 80). Section 3.4 indicates how adhering to the procedures of Grounded Theory Method and canons of qualitative research helped to mitigate these criticisms.

3.3 CASE STUDY METHOD

The proceeding discussion provides a critique of the Grounded Theory Method and its appropriateness in developing a metasystem pathology identification construct. One of the key products of this research is the articulation of systems theory-based pathologies. During the course of this research, there emerged an opportunity to 'face' validate the utility of ideas of pathologies emerging from the research. In connection with this opportunity, a research method, a mixed case study method, selected for 'face' validating pathologies is introduced. Literature on the case study method (e.g., see Rouse & Boff, 2003; Stake, 1995; Thomas, 2011; and Yin, 2009) suggest that this method is suitable for situations when one is interested in a focused analysis for a given unit of analysis. This is in line with the objective of the second research question.

The second research question states: "What results from the deployment of the *metasystem pathologies identification construct in an operating setting?*" The purpose of this question is to provide a 'face' validation of the developed construct in a specific setting. The obvious methodological choice is a case study approach. A case study method can be used to provide a story about something pertinent to the study (Stake,

1995). Specifically, Yin (2009) suggests, "...you would use the case study method because you wanted to understand a real-life phenomenon in depth, but such understanding encompassed important contextual conditions – because they were highly pertinent to your phenomenon of study" (p. 18). By using a case study, the researcher is then capability of drawing preliminary conclusions regarding a developing theory (i.e., metasystem pathologies identification), insights into the phenomenon under study (i.e., linking systems theory to problem formulation) as well as constituent elements of systems theory-based pathologies and proposed future research.

Taken as a research method, a case study offers a rigorous approach for data collection, analyzing, and interpretation of observations and data (Frankfort-Nachmias & Nachmias, 1992). In this capacity, a case study becomes a research design or a blueprint for addressing study questions, identifying data to collect, and how to analyze data (Philliber, Schwab, & Samsloss, 1980). Thus, a case study is expected to "describe what happened when, to whom, and with what consequences in each case" (Neale, Thapa, & Boyce, 2006, p. 3). These ideas where appealing to the researcher since, there is a chance to provide immediate feedback on the utility of the construct. Specifically, the researcher is interested in the construct's utility in articulating the systems theory-pathologies, conditions affecting system performance, in different settings as well as identifying changes, if any, that need to be make the construct (theory) of metasystem pathologies identification to better contribute to problem formulation. In this research, Yin's (2009) well-established approach to the case study method is used as the baseline for face validating the developed systems theory-based pathologies identified in the theory

development phase. A detailed discussion on the activities undertaken during mixed case study is provided in Chapter IV.

Several factors influence the selection of case study as an appropriate research method. These are stipulated by Yin (2009) as: (1) the type of research question, (2) the extent to which the researcher has control over actual behavioral events, and (3) the degree of focus on contemporary as opposed to historical events. Table 17 represents Yin's (2009) criteria for selection of a research method. Given the nature of the second research question, the methods addressing the 'what' type of questions are of interest to the researcher. Interestingly, Yin (2009) suggests that the 'what' type of questions is related to exploration or enumeration of phenomena under study. The exploratory-type of 'what' might yield relevant propositions that could further be explored to understand a situation under study. In such a situation, "any of the five research methods can be used" (p. 9) by a researcher. However, the enumeration-type of 'what' is mainly concerned with, for example, 'a number of ways' to improve a given situation. In such a situation, a survey or archival method would be a preferred approach (Yin, 2009).

Method	(1) Form of research question	(2) Requires control of behavioral events?	(3) Focuses on contemporary events?
Experiment	how, why?	yes	yes
Survey	who, what, where, how many, how much?	no	yes
Archival	who, what, where,	no	yes/no
Analysis	how many, how much?		
History	how, why?	no	no
Case Study	how, why?	no	yes

Table 17: Criteria for Selection of Research Method, Adapted from Yin, 2009, p. 8

A survey design is appropriate for this research. It can be used to enumerate pathologies in a given unit of analysis. However, the researcher is also interested in variability in participants' view on pathologies (e.g., existence of pathologies, potential consequence, organizational resilience against pathologies, organizational susceptibility [state of being easily affected] against pathologies). This calls for specifically designed case that goes beyond enumeration of pathologies. Moreover, it is possible to have varying perspectives on the same pathology in the same unit of analysis or different units of analysis. *Therefore, the researcher used a mixed approach to explore the results the deployment of the developed construct. The detailed design of this mixed approach is presented in Chapter IV*.

Furthermore, the choice of a case study mixed research design reflects a long standing philosophical paradigm consistent with the dimensions of methodology, epistemology, ontology, and nature of human being identified as grounding for this research. Methodologically, the researcher is interested in understanding different perspectives underlying different individuals or settings related to pathologies. Thus, this research supports the **idiographic** dimension of methodology, which assumes that "one can only understand the …world by obtaining first-hand knowledge of the subject under investigation" (Burrell & Morgan, 1979, p. 6). Epistemologically, this research suggests that knowledge about existence of pathologies of an organization "is soft, more subjective, spiritual, or even transcendental – based on experience, insight, and essentially of a personal nature" (Flood & Carson, 1993, p. 247). Thus, this antipositivism perspective of the results of deployment of the construct suggests that we can expect different degrees of existence and variability in measures for pathologies. Ontologically speaking, then the concept of metasystem pathology would have to be "a product of individual consciousness" (Flood & Carson, 1993, p. 247). This is indicated by the variance in case study results captured in Chapter V. Finally, the nature of human beings is taken to be voluntaristic since different people in the same organization may have a varying perspective on the same pathology. By taking a more inductive-subjective approach to the case study, a researcher is then able "to retain the holistic and meaningful characteristics of real-life events – such as individual life cycles, small group behavior, organizational and managerial processes, neighborhood changes, school performance, international relations, and the maturation of industries" (Yin, 2009, p. 4). The literature is replete with different applications and utility for the case study approach. However, just like the Grounded Theory Method, the case study method is not without criticism. 3.3.1 Criticisms of the Case Study Method

The purpose of this section is to articulate criticisms associated with case study approach and their implications for the research. Subsequent sections (3.4) identify research design responses for mitigating such criticisms. Four dominant criticisms of the case study method for research are addressed in this section. A first general criticism of case study method is that it lacks rigor (Neale et al., 2006; Yin, 2009). Surely, this criticism stems for the fact that the case study method is associated with qualitative research. Neale et al. (2006, p. 4) suggests that the case study method is "still considered unscientific by some and in many cases...[additionally] case study researchers have not been systematic in their data collection or have allowed bias in their findings" (Neale et al. 2006, p. 4). Moreover, researchers claiming to use case study method have been "sloppy, [have] not followed systematic procedures, or [have] allowed equivocal evidence or biased views to influence the direction of the findings and conclusions" (Yin, 2009, p. 14). This may as well be the case since the case study method is not widely used and therefore may have lacked specific guidelines that a researcher must follow (Yin, 2009).

A second common criticism of case study method is that case study results are not generalizable. The question here is, "How can you generalize from a single case?" (Yin 2009, p. 15). It turns out that critics fail to realize that scientific facts are rarely based on single experiments (Yin, 2009). Conversely, a researcher doing a case study must realize that multiple replications are needed before making concrete statements about generalizability of results to other settings. Nevertheless, Yin makes a point to distinguish between 'statistical' and 'analytical' generalization. Rather than focusing on statistical generalization (stemming from enumerate frequencies), the researcher doing a case study should focus on analytical generalization (expand and generalize a theory) in different conditions (Yin, 2009). *In this research, the case study is only used to face validate pathologies articulated during development of metasystem pathologies identification construction. The purpose of the research served by the case study is to provide initial insights regarding construct's utility in formulating factors and issues affecting system performance.*

A tendency to have long narratives of the cases forms the basis for a third criticism against case studies. A researcher is advised to have a rich description of the case study using "detailed information [and] using a variety of data collection procedures" (Creswell, 2009, p. 13). Consequently, the narrative may be too long and therefore "massive [and] unreadable" (Yin, 2009, p. 15). However, a researcher can avoid creating a massive and painstakingly unreadable document by using current readily available computer-based tools. Moreover, a researcher can adapt better writing and displaying tactics (e.g., Data Accounting Log, Conceptually Clustered Matrix, Effects Matrix, etc.) as described in Miles, Huberman, and Saldaña (2014). *In this researcher, the researcher utilized QSR International's NVivo 10 software package (Edhlund & Mcdougall, 2013) to aid in organization of coding and construct development in addition to implementing matrixes and displays to manage and analyze datasets.*

A noteworthy final criticism of case studies is that they are not 'true experiments.' The role of true experimentations is to indicate "*casual* relationships – that is, whether a particular 'treatment' has been efficacious in producing a particular 'effect'" (Yin, 2009, p. 16). Case studies are often not taken seriously because they are not designed to show causal relationships. However, Yin (2009) suggests that this criticism is superficial because true experiments do not address the question of 'how' or 'why' a specific treatment worked. In this research, the researcher is interested in utility of the developed construct especially in aiding to articulation of pathologies. The case is not used to draw conclusions of causal relationship to pathologies, why there are divergence in participant perspectives or whether a particular treatment is effective treatment does not take place in this research. Moreover and in accordance with the purpose of this research, deployment of the developed construct in an operational setting is meant as an initial application to attempt to address issues affecting systems from a systems theory perspective. Therefore, the results of the case application might be of valuable complement to future experimental research and treatment of systems pathologies rather than an alternative.

3.4 MITIGATING CRITICISMS

Throughout this research, the importance of active accountability for research design decisions was purposefully maintained in selection of research methods. The purpose of this section is a two-fold. First, achieving trustworthiness in qualitative research based on rigorous canons of science is described. Second, specific measures undertaken to mitigate criticisms to grounded theory and case study methods are described.

At a general level, all research, qualitative or quantitative, is judged based on the degree to which four elements (canons of science) are met: significance, generalizability, consistence, and neutrality (Creswell, 2009, Guba, 1981; Leedy & Ormrod, 2010; Miles et al. 2014; Strauss & Corbin, 1998; Yin, 2009). Significance deals with truth-value and ensuring that the findings are credible based of a set criteria. Generalizability is the extent to with research findings are transportable to other situations beyond those of the original study. Consistence deals with the repeatability of research findings. Neutrality deals with ensuring that the findings are not biased by the researcher or the selected research design. Moreover, the divide between inductive-based qualitative and deductive-based quantitative research approaches forms the basis for differing criteria for judging the efficacy of each research approach.

In an inductive type of inquiry, the research is judged along the lines of credibility, transferability, dependability, and confirmability (Lavrakas, 2008; Patton, 2002). Conversely, deductive type of inquiry is judged along the lines of internal validity. external validity, reliability, and objectivity (Creswell, 2009; Yin, 2009). Figure 15 is

drawn to identify the differing perspectives for judging research along the dimensions of qualitative – induction and quantitative – deductive distinctions.

Figure 15: Dimensions of Canons of Science

Additionally, Table 18 presents further distinctions between canons of science for inductive and deductive research. Each column provides indicators that can be taken to enhance each element of the selected element of the canons of science. This suggests that criticisms to research have to be acknowledged in relationship to the specific type of research being pursued.

Table 18: Two Dimensions of Canons of Science and Their Indicators

Elements of Canons of Science	Inductive Research	Traditional - deductive research
Significance	Credibility - concerned with the level of	Internal validity - this is concerned with ensuring
	congruency of findings and the reality	that we measure what we think we are measuring
	(Merriam, 1998). Credibility can be established	(Brewer & Sousa-Poza, 2009; Sharpe, 1940). A
	in qualitative research through (Shenton, 2004):	researcher thus takes precaution to eliminate other
	 Selection and use of well-established 	possible explanation for the observed results. Internal
	research method	validity in quantitative research can be increase
	 Familiarity with participants in the 	through (Leedy & Ormord, 2010):
	organization serving as a unit of analysis	 Conducting research in a well-controlled setting
	 Use of random sampling 	so that environmental conditions are regulate
	 Use of different methods to arrive at 	 Conducting research in a double-blind setting
	similar results (triangulation)	that attempts to eliminate any subjective,
	 Use of iterative questioning and 	unrecognized biases carried by an experiment's
	transparency	subjects and conductors
	 Use of negative case analysis 	 Conducting experiments in an unobtrusive
	 Holding debriefing sessions with research 	manner such that participants or subject do not
	a director	know that they are being observed
	 Peer scrutiny and participant checking of 	 Triangulation approach where multiple sources
	the research project	of data are collected with the hope that they will
	 Theory building 	all converge to support hypothesis
	 Background, qualifications, and 	
	experience of the researcher	

External validity – entails generalizability. This is	concerned with the extent to which results of a	quantitative study apply to situations beyond the	study itself (Creswell, 2009). Generalizability in	quantitative research can be enhanced through	(Leedy & Ormord, 2010):	 Designing an experiment that incorporates as 	many real-life settings as possible	 Using a 'representative sample' of the 	population under study	 Undertaking the same study in different 	contexts and ensuring that the results are the	same				
Transferability – This is equivalent of	generalizability. However, since the purpose of	inductive research is not to generalize findings	to sites or systems beyond those of the original	research, the value of qualitative research is in	the descriptions and themes developed in	context of specific cases (Creswell, 2009; Yin,	2009). Transferability is established in	qualitative research through (Shenton, 2004):	 A researcher ensures that he/she is not 	concerned with statistical generalization	 Provision of background data to establish 	context of study	 Provision of detailed description of 	phenomenon under study to allow	comparisons similar parameters,	populations or characteristics
Generalizability	(Applicability)															

Table 18 (cont.)

=
0
~~
0
\sim
∞
0
Γ
\mathbf{O}
_
0

<u> </u>

Consistence	Dependability – this is equivalent of	Reliability – this is equivalent to consistence and it
	consistence and refers to research's ability to	refers to the extent to which results are consistent
	account for changes in the phenomena of study	over time using the same procedures, methods, tools
	and the design (Creswell, 2009; Guba, 1981).	and techniques (Golafshani, 2003). The research
	Dependability is established in qualitative	instruments are considered reliable if they can
	research through (Shenton, 2004):	produce repeatable measurements, tests, and
	 Documentation of procedures as well as 	experimental findings (Brewer & Sousa-Poza, 2009;
	steps in the research design	Creswell, 2009). Reliability in quantitative research
	 Provision of operational detail and data 	is established through (Leedy & Ormord, 2010):
	collection	 The instrument should always be administered
	 Avoid transcription mistakes 	in a consistent manner with all participants or
	 Avoid drift in meaning of 'coding terms' 	systems
	 Cross-checking of codes in a project that 	 Establishment of a standard criteria for judging
	involves more than one member or	research results
	restricted by space (evaluation of project)	 Any person using the tool should be well-
		trained and understand the underlying
		assumptions

Table 18 (cont.)

Neutrality	Confirmability/Auditability – this is	Objectivity – this is quantitative researcher
	qualitative research comparable concern to	comparable concern to objectivity. This is concerned
	objectivity. It is concerned with ensuring that	with ensuring that researcher's influences and biases
	the findings are the result of experiences and	are minimized to an acceptable level (Brewer &
	ideas of participants (Guba, 1981). A researcher	Sousa-Poza, 2009). Objectivity quantitative research
	must make explicit any predispositions	can be enhanced through (Leedy & Ormord, 2010):
	(Creswell, 2009; Guba, 1981). Confirmability is	 Define the behavior being studied in precise
	established in qualitative research through	and concrete manner so it is easily recognizable
	(Shenton, 2004):	when it occurs
	 Use of triangulation to reduce effects of 	 Divide observation period into small increments
	researcher's bias	to allow consistent measuring of observation
	 Explicit articulation of researcher's 	behavior
	assumptions	 Standardization of a rating scale for evaluation
	 Recognition of research shortcomings in 	of behaviors
	the applicable methods and their potential	 Use of independent measurers who can rate
	effects	behavior without knowledge of each ones rating
	 Provision of in-depths methodological 	 Training of raters in a standard evaluation
	description to allow scrutiny of research	technique to ensure consistence
	results	
	 Provision of diagrams to illustrate 	
	auditability that allows observer to trace	
	course of research step-by-step through	
	decisions make and procedures	

In addition to adhering to the 'appropriate' the canons of science, a researcher may consider doing an evaluation of the research question to help decide an appropriate research approach to research – qualitative or quantitative. Table 19 is adapted from the work of Leedy and Ormrod (2010, p. 96) to distinguish between qualitative and quantitative research.

Question	Qualitative - inductive	Quantitative - deductive
What is the purpose of research?	 To describe and explain To explore and interpret To build theory 	 To explain and predict To confirm and validate To test theory
What is the nature of the research process?	 Holistic Unknown variables Flexible guidelines Emergent methods Context-bound Personal view 	 Focused Known variables Established guidelines Predetermined methods Somewhat context-free Detached view
<i>What are the data like, and how are they collected?</i>	 Textual and/ image-based data Informative, small sample Loosely structured or non- standardized observations and interviews 	 Numeric data Representative, large sample Standardized instruments
How are data analyzed to determine their meaning?	 Searches for themes and categories Acknowledgment that analysis is subjective and potentially biased Inductive reasoning 	 Statistical analysis Stress on objectivity Deductive reasoning
How are the findings communicated?	 Words Narratives, individual quotes Personal voice, literacy styles 	 Numbers Statistics, aggregated data Formal voice, scientific style

Table 19: Distinction between Qualitative and Quantitative Research, Adapted fromLeedy and Ormrod, 2010, p. 96

Once a research effort is classified as qualitative or otherwise, the researcher can

then use such insights to focus on different elements of the selected research type to

ensure that the appropriate instantiation of the canons of science are employed. Table 20 is also drawn from Leedy and Ormord (2010, p. 107) to elaborate on key features that guide a research in a selection of an appropriate research approach. A researcher can use these suggestions to aid in development of a defensible research design.

Table 2 ⁴	0: Research Design Considera	tion Issues, Adapted from Leed	y and Ormrod, 2010, p. 107
Use this approach if:	Qualitative	Quantitative	For current research
You believe that:	 There are multiple 	 There is an objective 	 In systems research, different
	possible realities	reality that can be	individuals construct realities and these
	constructed by different	measured	realities are complimentary in nature.
	individuals		This is the taken for pathologies
Your audience is:	 Familiar with/supportive 	 Familiar/supportive of 	 The researcher is familiar with
	of qualitative studies	quantitative studies	qualitative research
Your research	 Exploratory, interpretive 	 Confirmatory, predictive 	 The type of research under
question is;			consideration is exploratory in nature
The available	 Limited 	 Relatively large 	 There is limited literature describing
literature is:			pathologies from systems theory
The focus of your	 Involves in-depth study 	 Covers a lot of breadth 	 This research is focused in an in-depth
research is:			study of relationship between systems
			theory and problem formulation
Your time available	 Relatively long 	 Relatively short 	 There was relatively long period of time
is:			to study the phenomenon
Your ability/desire to	High	 Medium to low 	 The source of data is literature and there
work with people is:			is high desire understand people's ideas
			as presented in literate as well as their
			perspectives in settings
Your desire for	 Low 	 High 	 The research is mostly driven by data
structure is:			and not a preselected structured
			approach
You have skills in the	 Inductive reasoning and 	 Deductive reasoning and 	 Researcher extensively relies inductive
area(s) of:	attention to detail	statistics	reasoning to develop a construct for
			metasystem pathologies
Your writing skills are	 Literary, narrative 	 Technical, scientific 	 There is an extensive use of memos
strong in the area of:	writing	writing	narrating ideas related to pathologies

3.4.1 Measures to reduce criticisms

Section 3.4 provides a general distinction between qualitative and quantitative research as well as measures that can be undertaken to ensure that research fits within a selected research paradigm. The purpose of this section is to elaborate on specific measures undertaken to increase credibility, transferability, dependability as well as confirmability (i.e., trustworthiness) in this research concerning grounded theory and case study methods.

The Grounded Theory Method was exclusively used in development of systems theory-based pathologies as well as the metasystem pathologies identification construct. The face validation of the pathologies was undertaken in a mixed case-survey study that focused on identification of pathologies a unit of analysis. Table 21 is drawn to identify research methods, purpose of the methods, area of focus, elements of data collection, and means for data analysis.

Table 2 Research Design	I: Basic Information P Purpose	ertinent to this Research Desi Focus	gn. Adapted from Leedy and Methods of Data Collection	Ormord, 2010, p. 146 Methods of Data Analysis
Grounded Theory	To derive a theory (construct) of metasystem pathology	Relating to how systems theory can be used to enhance problem formulation phase of	 Develop a codebook to further expand meaning systems theory dataset (e.g., Saldaña, 2013) 	 Develop a prescribed and systematic method of coding dataset into categories and identifying interrelationships
	identification in systems theory literature	systems-based methodologies at the metasystem level	 Use Adams et al. (2014) paper to provide an initial starting point for data collection 	 Construct a theory from the developed categories and interrelationships – using seminal texts on Grounded
			 Elicit input from 'system experts' to ensure rigor undertaken in data collect and consistence in grounded theory application 	Theory Method (e.g., Birks & Mills, 2011; Glaser & Strauss, 1967; Strauss & Corbin, 1990)
Case Study	To face validate theory (construct) and its derivative systems theory	Focus on an organization in it natural setting as a unit of analysis	 Use written documents Develop a standard survey tool to aid in data collection 	 Agreement on existence the development pathologies and their enumeration Variability in individual
	pathologies in an operating environment		 Use the developed survey to measure aspects of pathologies 	 Perspectives pathologies Applicability and utility of the developed construct to aid in problem formulation

Overall, the trustworthiness of this research was improved by making of different mechanisms. The advice drawn from Creswell (2009), Eisenhardt (1989), Guba (1981), Leedy and Ormrod (2010), Shenton (2004), and Yin (2009) are used to address trustworthiness of the different areas of this research. More specifically, Eisenhardt (1989) research on reason for improving research is adapted to this research. Table 22 provides a summary of activities undertaken to improve quality of this research. Additionally, it's worth noting that some of mechanisms (e.g., QSR International's NVivo 10 software package for coding) are obvious from the beginning. However, other measures had to be developed as the research unfolded given the emergent nature of this research.

	Table 22: Measures Undertaken to Improve Rese	earch Trustworthiness	
Phase of Research	Undertaken Activities	Reason for Activity	
Research initiation	 Developed a purpose consistent with qualitative 	 Alerts researcher of the appropriate research 	
	research	design	
	 Ensure 'theoretical sensitivity' 	 Alerts researcher of possible preconceived 	
		concepts and biases	
Literature selection	 Set a criteria for selection of literature 	 A researcher retains theoretical flexibility 	
Enfolding literature	 Comparison of ideas with other - possible 	 A researcher builds credibility, raises theoretical 	
	conflicting ideas	level, and sharpens theory (construct)	
	 Ongoing idea and concept comparison 	definitions	
		 A researcher sharpens transferability, raises 	
		theoretical level, and improves theory	
		(construct) definition	
Crafting instruments	 Documentation of procedures and steps 	 A researcher strengthens dependability 	
and protocols	 Elicit feedback from experts 	 A researcher strengthens confirmability of 	
	 Apply external review 	researcher	
	 Use triangulation (more than one survey responses) 	 A researcher provides means to assess biases 	
		and missing data from the research	
Shaping theory	 Iterative tabulation of codes, concepts, and 	 A researcher confirms, extends, sharpens theory 	
	construct development	 A researcher builds credibility 	
Reaching closure	 Theoretical saturation (ensure no more relevant 	 A researcher ends process of coding when 	
	codes, concepts emerge from data)	marginal improvement on the theory (construct)	
		is small	
Testing theory	 Application of the developed construct (case 	 A researcher face validates the developed 	
	application in an operational setting)	construct	
	 Avoid statistical generalization 	 A researcher improves transferability 	
Theory implications	 Documentation of insights from application, 	 A researcher ends research with implications for 	
	suggesting changes, if any, and suggested venues	the developed theory (construct)	
	of research	 A researcher draws conclusions of construct 	
		applicability, weaknesses, and future research	

147

3.5 CHAPTER SUMMARY

This chapter introduced a philosophical paradigm in support of this research. Specifically, two contrasting approaches to formulation of a rigorous research paradigm were presented in regards to knowledge claims. This chapter indicated that dimensions of methodology, epistemology, ontology, and nature of human beings form the basis of any research. Using information presented in the preceding chapters, this research was identified as following an idiographic view of methodology were knowledge is subjective. Knowledge on pathologies is also soft and based on experiences and insights of the individuals making the attribution. Thus, elements of cognition and environment are essential elements of understanding systems theory-based pathologies for problem formulation.

In preparation of the second research question, this chapter demonstrated the level of appropriateness of the Case Study Method in face validating the emerging metasystem pathologies identification construct. A review of the method, its weaknesses, and the means to address criticisms were provided. This chapter forms the foundation for Chapter IV, which discusses details of the specific research design undertaken to execute grounded theory and deploy a mixed case-survey research design.

CHAPTER IV: RESEARCH DESIGN

This chapter discusses the research design for theory (construct) development and case application to respond to the research questions. Information pertinent to different activities in each of the research designs is discussed. The chapter builds upon research questions articulated in Chapter I, supported by pathology perspectives in Chapter II, and complimented by philosophical underpinnings presented in Chapter III. The research design enables development of the theory and supported through a case study to provide face validation. The theory development section discusses the Grounded Theory Method and the different activities that were undertaken during data collection and the coding that permitted construction of the systems theory-based pathologies. The outcome is the grounded theory-based phase of the research design is a theory (construct) for *metasystem pathologies identification* along with articulated pathologies that can be used to inform problem formulation in systems-based approaches. The case application phase discusses details of the mixed-survey case study application design that provided 'face' validation for the articulated systems theory-based pathologies. This face validation serves to demonstrate the capability of the theoretical construct for metasystem pathologies to be deployed in an operational setting. The findings from execution of this research design are presented in Chapter V. Chapter VI, which concludes this research. discusses implications and insights gleaned through the execution of this research as well as future proposed research directions based on findings. Figure 16 provides the organization of this chapter.

149

Figure 16: Organization Diagram for Chapter IV

4.1 MULTI-PHASE RESEARCH DESIGN

This section provides the overall plan and stages of the research design. Figure 17 depicts the high-level organization of the research design. A key aspect of this research is the role of literature and familiarity with key concepts of research. To keep research aligned with tenets of the Grounded Theory Method's call for avoiding preconceived notions, the researcher made it a point of emphasis to consciously avoid influence from previous research. However, it should be noted that the literature review section provided the basis for the research questions undertaken in the research. The scarcity of theoretical

concepts explicitly linking systems theory to the problem formulation phase of systemsbased methodologies supported the objective of avoiding preconceived concepts of systems theory-based pathologies and the subsequent theory (construct) of metasystem pathologies identification. The early exploration research and familiarization with emerging and evolving key concepts in literature aided in developing a 'working' definition of systems-based pathology as well as an 'emerging' perspective on metasystem pathology. This is does not violate the tenets of the Grounded Theory Method. In fact, Urquhart (2002) reminds us that we do not have to start with a "tabula rasa...[since] there is nothing in the GTM [Grounded Theory Method] literature that specifically precludes looking at relevant literature before entering the field" (p. 50). Glaser's (1992) warning to researchers: "there is a need not to review any literature in the substantive area of study" (p. 31) is meant to ensure that codes, categories and eventually theory (construct) emerge from data, not preconceived prior to the analysis.

The exploration phase of the research design represents a wider-range of literature including systems literature that formed the basis for devising research purpose, objectives and research questions. In this phase, the research was largely unstructured and involved insights from various venues including classes undertaken in the master's program, interests of the researcher, spinets of discussions with the dissertation advisor, and inputs provided on the dissertation proposal. In addition, the week-long process of candidacy examination and input from the dissertation committee provided a much-needed input to shape concepts in this research. During this phase, a working 'definition' of *systems-based pathology* took shape and as well as development of a *perspective on metasystem pathologies*. This phase concluded with the formulation of research purpose,

objectives, and research questions. Section 4.2.1 provides a detailed account of activities in this phase of research. In addition, these preparations provided the 'theoretical sensitivity' identified by Glaser (1978) as a critical component of the Grounded Theory Method.

The theory development phase was designed to respond to Research Question 1. This phase describes how systems theory can be used to generate systems theory-based pathologies and eventual development of a metasystem pathology identification construct that supports problem formulation in systems-based methodologies using the Grounded Theory Method. This is represented by the vertical ellipse in Figure 17. This ellipse, describing high-level stages of the Grounded Theory Method, is dashed to indicate that ideas and data from multiple streams were used to shape development of the theory (construct). As the research progressed through the different activities of the Grounded Theory Method, a constant comparison of ideas was made to purposely continue improvement of ideas being developed. This was especially important as data collection was a continuous process. It is important to stress that the "constant comparative method is designed to aid the analyst who possesses these [skills and sensitivities to the phenomena under study] abilities in generating a theory that is integrated, consistent, plausible, close to the data – and at the same time is in a form clear enough to be readily, if not partially, operationalized for testing in quantitative research. Still...the constant comparative method is not designed...to guarantee that two analysts working independently with the same data will achieve the same results; it is designed to allow, with discipline, for some of the vagueness and flexibility that aid the creative generation of theory" (Glaser & Strauss, 1967, p. 103 emphasis is mine). At the same time, notice that the double-headedness of lines linking different activities of grounded theory and case application, are meant to illustrate the iterative nature of the constant comparative method. The output of the theory development phase is a grounded theoretic construct of Metasystem Pathologies Identification and a listing of Systems Theory-Based

Pathologies pertinent to problem formulation phase in systems-based approaches. Section 4.2.2 provides a detailed discussion of steps undertaken during theory (construct) development.

The case application phase was designed to respond to Research Question 2. Originally, the research was designed to conclude with the discovery of an inductive theory of Metasystem Pathologies Identification. However, an opportunity emerged to explore construct utility in operational setting. In the case application phase, the researcher describes how the developed metasystem pathologies identification construct was 'face' validated in an operational setting using a mixed-case study approach. Yin's (2009) well-established case study method and its activities processes as well as a survey tool were used for a design that 'face' validated systems theory-based pathologies that were developed during theory (construct) development. It is important to note that the 'face' validation demonstrated the ability of the metasystem pathology construct to be deployed in an operational setting. Section 4.2.3 provides a detailed discussion on the design for case application including tools that were used. In each of these three major stages of research design, an emphasis on rigorous design and accountable execution were pursued to enhance the credibility of the results obtained to respond to the research questions.

4.2 DETAILED PHASES OF RESEARCH

The three phases of this research are research exploration, theory development, and case application. In each phase of research, specific mechanisms were used to execute the analysis strategy. Table 23 illustrates methods/techniques and primary references used in connection with data collection and analysis.

		Table 23: T	The Three Major Ph	nases of Research	
Research	Data	Data Collection	Data Analysis	Data Analysis References	Expected output(s)
phase	collection methods	References	Methods		
Exploratory	Data	Patton, 2002; Miles	Grounded	Patton, 2002; Miles et al.,	- A working definition
	Accounting	et al., 2014; Strauss	Theory Method	2014; Strauss & Corbin,	of 'metasystem
	Log;	& Corbin, 1990		1990	pathology
	Document				- An emerging
	Review				perspective on
					metasystem pathology
Theory	Grounded	Birks and Mills,	Grounded	Birks & Mills, 2011;	- A listing of systems
[construct]	Theory	2011; Glaser &	Theory Method;	Glaser & Strauss, 1967;	theory-based
development	Method;	Strauss, 1967;	Document	Strauss & Corbin, 1990	pathologies
	Document	Strauss & Corbin,	Review		- Metasystem
	Review	1990			Pathologies
	-				Identification (MPI)
					construct
Case	Case Study	Yin, 2009; Miles et	Case Study	Yin, 2009; Miles et al.,	- Enumeration of
application	Method;	al., 2014	Method;	2014	pathologies
	Construct		Construct Table		 Degree of existence of
	Table				pathology
					 Degree of consequence
					of pathologies
					 An overall
					pathological profile of
					the unit of analysis
					 Utility of the
					developed construct

search	۲
of Re	•
hases	4
Major P	
Three N	•
he	¢

4.2.1 Exploratory Phase

The exploratory phase is best described as a combination of pre-research and conception of research questions. As previously indicated, the researcher's interest in qualitative research was developed over an extended time and immersion in research literature. At the background, the researcher has always had interests in thinking in terms of *systems* and literature discussing holistic thinking. However, key concepts such as how a concepts of system theory might be used to enhance different phases of systems-based methodologies including problem 'framing', did not emerge until efforts for the preparation for doctoral research proposal were undertaken. In preparation for the proposal and especially during the candidacy exam, the researcher encountered interesting literature discussing 'system pathologies.'

Once the researcher sought to focus on problem formulation in terms of pathologies, literature discussing 'system pathology' was documented in a 'Data Accounting Log' to collect ideas concerning pathology in reference to 'health' of inanimate systems such as complex organizations (Barnard, 1946; Beer, 1984; Ríos, 2012), computer systems (Bobba, et al. 2007), and social systems (Beer, 1984; Yolles, 2007). During this process, the researcher examined Beer's (1984) work, *The viable system model: Its provenance, development, methodology and pathology*. In this work, Beer suggested that systems theoretic concepts of 'communication' and 'control' could be used to ensure complex system viability (Beer, 1984). Previously, Beer's (1979; 1981) research, as supplemented by Keating and Morin (2001) had suggested that viability of complex systems depended on execution of the necessary and sufficient subsystem functions of productive (S1), coordination (S2), operations (S3) and monitoring (S3*), system development (S4) and learning and transformation (S4*), and system policy and identity (S5). A key feature of Beer's (1984) paper is that "viable systems of all kind are subject to breakdown. [and] Such breakdowns may be diagnosed, simply in the fact that some inadequacy in the system can be traced to malfunction in one of the five subsystems, where in turn one of the cybernetic features ...will be found not to be functioning" (p. 17). By linking concepts of systems theory (i.e., communication and control) to functions and viability of complex systems, it appeared that systems theory could serve as a basis for defining various aspects of complex systems. It is from here that the researcher sought to begin exploring how concepts of systems theory might enhance other aspects of complex systems in our natural world. Figure 18 shows the format for the initial Data Accounting Log, adapted from Miles et al. (2014) for 'systems pathology' in literature.

Sources	Definition of 'system pathology'	Ideas related to 'systems theory'
Beer, 1984	 Pathologies limit viability (i.e., capable of independent existence) of animate and inanimate systems In addition, "viable systems of all kind are subject to breakdown. Such breakdowns may be diagnosed, simply in the fact that some inadequacy in the system can be traced to malfunction in one of the five subsystems, where in turn one of the cybernetic features will be found not to be functioning" (Beer, 1984, p. 17) 	 Management cybernetic is basis for viability functions Viability functions are part of 'holistic thinking' Pathologies are described in terms of: Structure pathologies Functional pathologies Information and communication pathologies 2-3-4-5 'metasystem' pathology
Barnard, 1946	 Pathology is used to describe organizational issues that affect performance of formal organizations 	 Pathologies are described in terms of: Functional pathologies Scalar pathologies

Figure 18: A Partial Data Accounting Log for 'System Pathology'

Naturally, the initial ideas of 'systems pathology' led the researcher to expand into other areas of systems literature including 'systems theory,' 'complex systems,' 'systems of systems,' and 'systems-based methodologies.' Following further immersion in the literature, the researcher pursued the idea of using systems theory to enhance 'problem formulation' phase in 'systems-based methodologies' while focusing on a 'metasystem.' At this point in time, three assumptions were used as a guide to further formulation: (1) The concept of how 'systems theory' can be used to enhance problem formulation at the metasystem level was not explicitly articulated in systems literature, (2) The concept of 'metasystem pathology' had not translated into any rigorous research, with a minor exceptions of an emerging and related idea of 'system pathology' (e.g., Barnard, 1946; Beer, 1984, Keating & Katina, 2012), and (3) The concept of 'metasystem pathology' could be useful in helping to understand complex interdependent systems.

The combination of document reviews, insights on 'problem formulation' and 'system pathology' provided the basis for the emergent research purpose, objectives, and questions. Consequently, a working definition of 'metasystem pathology' was developed: *a circumstance, condition, factor, or pattern that acts to limit system performance, or lessen system viability and growth at the metasystem level, such that the likelihood of achieving desired performance is reduced.* Emerging out of a possible relationship among concepts of systems theory, metasystem pathology, and problem formulation in complex systems was an emerging perspective of metasystem pathologies as described in Chapter II. This emerging research perspective formed the basis for a 'research paradigm' underlying this research design as discussed in Chapter III.

Based in the emerging perspective of the research, coupled with the state of knowledge, the selection of appropriate research methods was performed. The selection of the method was based on reviews of different methods and their applicability to research questions. Table 24 (re)introduces research questions that were used in selection of research methods.

Research purpose	Research objectives	Research questions	Notes on research methods
to develop a systems theory based construct for identifying metasystem pathologies in the initial phases of complex system problem formulation for systems-based methodologies using the Grounded Theory Method	 Inductively develop a metasystem pathologies identification construct describing a relationship between systems theory and problem formulation phase of systems-based methodologies Deploy the developed construct to face validate its utility in an operational setting 	 How can systems theory be used to generate a metasystem pathologies identification construct to support problem formulation phase of systems- based methodologies? What results from the deployment of the developed metasystem pathologies identification construct in an operational setting? 	 Review well established methods to see their 'fit' to research questions

Table 24: Notes on Research Questions

Finally, the researcher developed a filtering mechanism to protect the research from inclusion of *any* data. More specifically, a criterion for inclusion of systems literature as data was developed. A primarily criteria for inclusion of data in the research was that the literature must be describing systems theory. Systems theory was taken as "a unified group of specific propositions [laws, principles, and theorems] which are brought together to aid in understanding systems" (Adams et al., 2014, p. 113) in this research. Table 25 provides further clarification on the criteria for inclusion/exclusion of different literature as data. The literature that passed these criteria were used during the first two phased of this research and by extension, the same data were essential in information of the statements and design for the mixed-survey case study application.

	Criteria for Literature Data	
Include	Peer-reviewed literature	
	Published a journal	
	Published in conference proceedings	
	Published in a textbook	
	Cited in other published work	
Exclude	Non-peer reviewed literature (e.g., magazine articles)	
	Unpublished literature	

 Table 25: Criteria for Inclusion of Literature Data

4.2.2 Theory [Construct] Development Phase

The purpose of this section is to provide details on different stages and activities of the grounded theory research method application. This includes data, data collection, and data analysis as well as measures undertaken to support canons of qualitative research. The well-established phases of the Grounded Theory Method helped the researcher to surface impressions (pathological conditions) from evidence (data), conceptualization the data and analyzing it for emerging relationships between concepts (Egan, 2002; Birks & Mills, 2011; Glaser & Strauss, 1967; Saldaña, 2013; Strauss & Corbin, 1990; 1998). Figure 19 elaborates stages/activities of the Grounded Theory Method. It is noteworthy to point out that while the activities and processes in this phase of research appear linear, they are not. The researcher continually collected data and contrasted ideas until the point of saturation was achieved. Similar to Egan's (2002) suppositions on saturation, the saturation point for this research was achieved once ongoing data collection and analysis failed to yield new concepts contributing to or elaborating on systems theory-based pathologies or the central phenomena of metasystem pathology identification construct. The scope of theory development phase conforms to delimitations of this research as set in Chapter I.

4.2.2.1 Research Initiation

The initiation phase of this research provides the area and context of the research. Egan (2002) notes that initiation of research is "an area of inquiry by the researcher can be described in a variety of ways or levels, including as a specific phenomenon, a place or location, or context" (p. 282). As previously articulated, the researcher wished to explore possible ways 'systems theory' can be used to inform different aspects of complex systems. Considerable time went into divulging research to sharpen the research focus before eventually settling on a finding possible ways 'systems theory' can be used to inform the 'problem formulation' phase of 'systems-based methodologies.' The definition of 'systems theory' from Adams et al. (2014) proved useful:

a unified group of specific propositions [laws, principles, and theorems] which are brought together to aid in understanding systems, thereby invoking improved explanatory power and interpretation with major implications for systems practitioners. It is precisely this group of propositions that enables thinking and action with respect to systems. (p. 113)

Moreover, the perspectives projected in the Adams et al. (2014) appear to align with bylaws of *International Society for the Systems Sciences* – especially the investigation and transfer of concepts, laws, and models from various fields to help in understanding other fields (Adams et al., 2014; Hammond, 2002; von Bertalanffy, 1972). In this case, systems theory was used to inform problem formulation with a concentration on issues affecting system performance (i.e., pathologies).

Consequently, and in accordance with Beer's (1984) formulation of pathology (especially the idea of adhering to cybernetic principles) and supplements of Keating and Katina (2012), one might describe pathology as *inadequate use of systems theory*. *Expressed as either the lack of application of laws, principles, and theorems of systems theory* (*i.e., not recognizing utility of systems theory*) or a direct systems theory (*i.e.,* *disregard for systems theory laws, principles, and theorems).* Thereafter, initial investigation suggested that the contemporary view of systems theory, as postulated by Adams et al. (2014), might be extended to further our understanding of issues affecting complex system growth, performance and viability, in particular, from a pathological perspective as part of problem formulation that informs design, execution, and evolution of newly designed or operating systems.

4.2.2.2 Data Collection

Naturally, the systems theory literature data collection began with the journal article of Adams et al. (2014). In this paper, the authors draw from six major fields of science and 42 individual fields of science, using axiomatic methods, to propose 30 constituent propositions - inclusive of laws, principles, and theorems - as a collective of systems theory clustered around seven axioms. The axioms included centrality, context, design, goal, information, operational, and viability. A collective of the supporting literature for these 30 propositions formed an initial 'dataset' for building 'codes' and 'categories' for systems theory-based pathologies using the Grounded Theory Method.

In the Adams et al. (2014) alone, the authors present over 30 references to different laws, principles, and theorems of systems theory. However, since the purpose of the Adams et al. (2014) article was to articulate a formal definition of systems theory, the authors only provided a sufficient set proposition to satisfy their objective. The authors did not make the claim that the 30 constituent propositions reflect an exhaustive listing of systems theory laws, principles, and theorems. This formed the need for researcher to expand the search for additional concepts of systems theory. In the search for systems theory laws, principles, and theorem, Table 25 and Table 26 below were used to develop a comprehensive list of laws, principles, and theorems for systems theory.

Table 26: Criteria for Inclusion/Exclusion of Systems Theory ConceptsThe laws, principles, and theorems "must have at least two specific areas ofapplication" (Weinberg, 1975, p. 42)A systems theory law is a well-established "generalization, based uponempirical evidence, which is well established, widely accepted, and whichhas considerable history behind it" (Clemson, 1984, p. 199)A systems theory principle is a well-established "generalization, based uponempirical evidence, which does not yet enjoy the status of a law"(Clemson, 1984, p. 199)A systems theory theorem is a "a generalization which has been proven in a

formal mathematical or logical sense" (Clemson, 1984, p. 199)

Unfortunately, there is scarcity of literature discussing 'systems theory' as a set of a "unified group of specific propositions" (Adams et al. 2014, p. 113). However, three documents: (1) Skyttner's (2005) General Systems Theory: Problems, Perspectives, (2) Clemson's (1984) Cybernetics: A New Management Tool, and (3) Krippendorff's (1986) A Dictionary of Cybernetics) provided an enhanced view of systems theory and the associated principles, laws, and theorems.

At the point in the research, sources for data of system theory concepts (systems principles, laws, theorems) were identified, the researcher then developed and applied a codebook. The construction and utility of this codebook followed Miles et al. (2014) along with supplements from Saldaña (2013) to assist in articulation of the meaning of the concepts associated with systems theory. This association was developed with an emphasis on pathological aspects of the concepts of systems theory. As a starting point,

this manual process began with the 30 systems propositions as articulated in Adams et al. (2014). During this process, it became increasing evident that the concepts of systems theory for collection and analysis could be significantly expanded from the starting set provided by Adams et al. (2014). This expanded set provided for a deeper and rich set of system theoretic concepts pertinent to our understanding of complex systems, especially for ideas related to problem formulation. Perhaps not surprisingly, there emerged a theme suggesting that different concepts of systems theory are relevant to complex system growth, performance, and viability. Figure 20 shows an example of entries into the codebook developed for discerning the meaning of different concepts of systems theory. Appendix A contains a comprehensive set of these concepts.

Principle of emergence	
Short description	emergence
Detailed description	Complex systems exhibit properties which are meaningful only when attributed to the whole, not its parts. "Every model of systems exhibits properties as a whole entity which derive from it component activities and their structure, but cannot be reduced to them" (Adams et al. 2014, p. 11").
Seminal author(s)	Aristotle, 2002
Inclusion criteria	This principle suggests that there is need to understand wholes and parts alike. Knowing parts or processes of subsystems does not equate to understanding behavior that occurs as a result of their interactions
Exclusion criterion	This principle would not be included if it were not used to describe complex systems
Typical exemplars	Weather, life
Atypical exemplars	Not needed
'close but'no	Not needed
Relevant note	This principle suggests that understanding complex systems exhibit properties and behaviors that cannot be understood by studying parts or elements of the complex system
Aspect(s) of pathology	A lack of consideration of this principle could result in a an attempt to make a direct correlation between local issues (behavior) and system-wide issues (emergent issues)

Additional notes:

"Whole entities exhibit properties which are meaningful only when attributed to the whole, not its parts.....Every model of human activity system exhibits properties as a whole entity which derive from its component activities and not their structure, but cannot be reduced to them." (Checkland, 1993, p. 314)

References:

Adams, K. M.	, Hester, P.	T., Bradley, J.	M., Meye	rs, T. J., & Kee	ting, C. B. (20	14). Systems
theory as	s the found	ation for unders	tanding sy	rstems. Systems	Engineering,	,1~(1),112–123.
Aristotle. (200	2). Metapi	hysics: BookH -	Forman	d being as work	. (J. Sachs, Tr	ans.) (2nd ed.).
Santa Fe	CA: Gree	n Lion Press.				
Checkland, P.	B. (1999).	Systems thinkin	g. quatemes	practice. New	York, NY: Jo	hn Wiley &
Sons.						
*			· •			

Figure 20: An Example Codebook Page for Principle of Emergence

The set of parameters of inclusion/exclusion of literature as articulated this

section only provides minimum requirements to initiate comparative data collection. It

would be notes that in grounded theory, the ongoing sampling of literature as 'data' is

expected and recommended.

4.2.2.3 Data Collection Initiation

Any research method depends heavily on data collection and the Grounded Theory Method is no different. However, a key aspect of the Grounded Theory Method is that data can be collected from a variety of sources – including interview transcripts, participant observation field notes, journals, documents, drawings, artifacts, photographs, video, internet sites, e-mail correspondence and many other forms of literature such as textbooks (Birks & Mills, 2011; Leedy & Ormrod, 2010; Glaser & Strauss, 1967; Strauss & Corbin, 1990). As previously noted, the researcher began with three primary sources of literature pertinent to systems theory: General Systems Theory: Problems, Perspectives (Skyttner, 2005), Cybernetics: A New Management Tool (Clemson, 1984), and A Dictionary of Cybernetics (Krippendorff, 1986)]. Other literature data sources were acquired over time in accordance with the criteria established for inclusion in the set of data for analysis based on the Grounded Theory Method. This process was an on-going process that can be described as 'finding' concepts of systems theory. Generally, the concepts of systems theory were limited to well-known laws, principles, and theorems as indicated by Clemson (1984). Whenever possible, these laws, principles, and theorems are represented as quotations from the original works of the scholars to whom they are attributed. These concepts were coded for meaning around 'system pathology' within the context of problem formulation.

An initial saturation was reached when no new concrete concepts, laws, principles, or theorems describing complex systems emerged. In a similar manner, an initial saturation for pathological issues was reached when no new pathologies emerged from the collected concepts of systems theory. To aid in this process, the researcher created hand memos to capture insights from the collected literature datasets. At all times, the guiding question for the development of pathologies was:

• What does it mean to deviate from this concept?

The researcher found that having this constant perspective as a reference point, helped assure continued focus on the relevant area of research (i.e., problem formulation) and drawing insights relevant to ideas of pathologies. Figure 21 presents an example of a hand memo developed for a systems theory concept of 'transcendence.' The researcher first found this concept in Capra's (1982) textbook *[The turning point: Science, society, and the rising culture]*. Subsequently, Krippendorff's (1986) research was used in the development of 'codes' and 'concepts' of pathology related to transcendence.

----4120/14 systems concept: Inns condence (capra, 1962) - complux systems can exhibit ubilities to creatively reach out far and beyond our physical and mental understandings * problem formulation? sometimes we simply unit unit unit shand complex syltims behavious - quantification becomes impossible - sometions such us praying and its conseguences -related to concept of system darkness? -see Krippendorff (1486)

Figure 21: An Example of a Memo Taken to Capture Insights Related to the Concept of Transcendence

To supplement literature data collection, a six expert reviewers were asked to

provide feedback on the initial list of concepts of systems theory as articulated by Adams

et al. (2014). Table 27 provides a set of qualification for expert reviewers.

Table 27: Criteria for Outside Expert Qualifications				
Qualification	Criteria			
Education	Earned doctorate in complex systems, engineering management, systems engineering, systems of systems engineering, or engaged in a doctoral level program in one of these areas			
Experience	Experienced in the field of systems, well-read researcher, author, or speaker with commercial or government systems engineering and systems-based methodologies			

The selected experts provided validation of concepts of systems theory as well as expanded a listing of concepts of systems theory to be included in the analysis. Figure 22 provides the additions of concepts resulting from expert input concerning concepts associated systems theory.

#	Concept Type	Name of concept	Relevant source(s)
1	Principle	Basins of stability	Weinberg, 2001
2	Principle	Cybernetic stability	Macy, 1991
3	Principle	Frame of reference	Knppendorff, 1986
4	Principle	Least effort	Ferrero, 1894: Krippendorff, 1986: Zipf. 1949
5	Principle	Ommvory	Skyttner, 2005
6	Principle	Polystability	Ashby, 1960; Krippendorff, 1986
7	Principle	Safe environment	Skyttner, 2005
8	Principle	System Context	Keating, Calida, Sousa-Poza, and Kovacic, 2010: Keating, Peterson, and Rabadi, 2003
9	Theorem	Conant-Ashby	Conant and Ashby, 1970; Skyttner, 2005
10	Theorem	Pareto optimality	Barr. 2012: Yan and Haimes. 2011
11	Theorem	Shannon-Hartley (i.e., Channel capacity)	Price and Woodruff. 2012: Shannon and Weaver. 1949
12	Theory	Sociotechnical	Clegg, 2000. Cherns, 1976. Keating, Jacobs. Sousa-Poza, and Pyne, 2001

References:

Ashby, W. R. (1960). Design for a brain. The origin of adaptive behaviour. New York: NY: John Wiley & Sons Inc.

Barr. N. (2012). Economics of the welfare state (5 edution.). Oxford, England: Oxford University Press. Cherns, A. (1976). The principles of sociotechnical design. Human Relations. 29(8), 783-792.

Clegg, C. W. (2000). Sociotechnical principles for system design. Applied Ergonomics, 31(5), 463-477

- Conant. R., & Ashby, W. R. (1970) Every good regular of a system must be a model of that system. International Journal of Systems Sciences, 1(2), 89-97
- Ferrero, G. (1894) L'inertie mentale et la loi du moindre effort. Revue Philosophique de La France et de l'Étranger. T. 37, 169–182.

Keating, C. B., Cahda, B. Y., Sousa-Poza, A. A., & Kovacic, S. F. (2010). Systems thinking. In D. Merino & J. Farr (Eds.), *The Engineering Management Handbook* (pp. xx-xx). Huntsville, AL: American Society for Engineering Management.

Keating, C. B., Jacobs, D., Sousa-Poza, A. A., & Pyne, J. C. (2001). Advancing sociotechnical systems theory. In Proceedings of the 22nd American Society for Engineering Management, National Conference (pp. 336– 341). Huntsville, AL: American Society for Engineering Management.

Keating, C. B., Peterson, W., & Rabadi, G. (2003) Framing of complex system of systems engineering problems. In Proceedings of the American Society for Engineering Management, (pp. 8-15). St. Louis, MO.

Krippendorff, K. (1986). A dictionary of cybernetics. Norfolk, Virgina: The American Society for Cybernetics. Retrieved from http://repository.upenn.edu/asc_papers/224

Macy, J. (1991) Mutual causality in Buddhism and general systems theory. The Dharma of natural systems Albany: NY: SUNY Press

Price, E., & Woodruff, D. P. (2012). Applications of the Shannon-Hartley theorem to data streams and sparse recovery. In 2012 IEEE International Symposium on Information Theory Proceedings (ISIT) (pp. 2446– 2450). Cambridge, MA.

Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Champaign: IL: University of Illinois Press.

Skyttner, L. (2005). General systems theory: Problems, perspectives, practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.

Weinberg, G. M. (2001). An introduction to general systems thinking (Silver Anniversary Edition). New York: NY Dorset House Publishing.

Yan, Z., & Haimes, Y. Y. (2011). Risk-based multiobjective resource allocation in hierarchical systems with multiple decisionmakers. Part I: Theory and methodology. Systems Engineering, 14(1), 1–16.

Zipf, G K (1949) Human behavior and the principle of least effort (Vol xi) Oxford, England: Addison-Wesley Press.

Figure 22: Results from Systems Experts

The concepts of systems theory that emerged out of the 'initial search' and

validation by systems experts was further narrowed down in data collection and the

subsequent analysis following (1) applicability of the concepts consistent with the area of

research and (2) redundancy of the concepts. Specifically, the Second Law of Thermodynamics (Feynman, Leighton, & Sands, 1963; Landau & Lifshitz, 1955; McCulloch, 1965), despite being well-recognized in systems literature (Clemson, 1984; Skyttner, 2005), lacked clear applicability in the research. This law states, "in any closed system the amount of order can never increase, only decrease over time" (Skyttner, 2005, p. 99). However, the very nature of complex systems suggests that they operate as open systems in as much as the must exchange information with their environment (Warfield, 1976). In fact, Clemson (1984) posits: "Any organizational unit closed to its environment can never increase in order and must eventually decrease in order. Openness to the environment is the first requirement for survival, growth, learning, or change" (p. 209). While there might exist pathological conditions associated with thinking that an organization is a closed systems, and there are certainly implications for thinking so, this research is interested in complex systems that interact with their environment. In this research, such systems are not considered as 'closed' systems as in second law of thermodynamics. This said, however, it is possible to consider a complex system 'closed,' so long as a system is "taken together with its environment" as suggested in Skyttner (2005, p. 63). Conversely, other concepts of systems theory were omitted because they were already subsumed in other related concepts. For instance, the principle of variety-adaptability (Skyttner, 2005; Watt & Craig, 1988) is considered redundant. Skyttner (2005) notes that "systemic variety enhances stability by increasing adaptability" (Skyttner, 2005, p. 102). This concept is clearly subsumed in systems concepts of system environment (Skyttner, 2005), adaptation (Hitchins, 1992), viability (Beer, 1979; Clemson, 1984) and redundancy (Clemson, 1984; Pahl et al. 2011).

Therefore, pathological conditions associated with such a principle are reasonably addressed by considering pathological implications for the associated laws, principles, and theorems. Table 28 provides a list of concepts that met the criteria for omission and therefore not included in this research.

Concepts of systems theory	Sources
Law of indeterminability	Weinberg, 1975
Principle of negative feedback causality	Skyttner, 2005
Principle of positive feedback causality	Skyttner, 2005
Principle of variety-adaptability	Skyttner, 2005
Second law of thermodynamics	Clemson, 1984; Skyttner, 2005
Theorem of feedback dominance	Skyttner, 2005

Having done this iterative process, the researcher was left with eighty-three (83) concepts of systems theory for analysis in this research. Whenever possible, the researcher took every opportunity to collect and use original literature sources data describing concepts of systems theory. However, this was not always possible. In such instances, the researcher sought secondary literature for inclusion in the 'dataset' describing those relevant concepts of systems theory. Following the initial data collection and the subsequent continuous data collection, concepts of pathologies were developed in the data analysis.

4.2.2.4 Data Analysis

This section provides a detailed accounting for the activities that were undertaken for the data analysis. These analyses eventually led to the metasystem pathology

construct (theory) and its corresponding systems theory-based pathologies. Four primary

activities associated with the Grounded Theory Method - open coding, axial coding,

selective coding, and theory development were used (Leedy & Ormrod, 2010; Strauss &

Corbin, 1990). Table 29 provides an overview of these primary activities.

Table 29: Activities of Grounded Theory Method, Adapted from Leedy and Ormrod, 2010 n 143

Activity	Descriptions
Open Coding	"The [text] data are divided into segments and then scrutinized for commonalities that reflect categories or themes. After the data are categorized, they are further examined for <i>properties</i> – specific attributes or subcategories – that characterize each category. In general, open coding is a process of reducing data to a small set of themes that appear to describe the phenomenon under investigation" (Leedy & Ormrod, 2010, p. 143). During open coding, specific 'codes' and 'categories' which are "researcher-generated construct that symbolizes and thus attributes interpreted meaning to each individual datum [concept of systems theory] for later purposes of pattern detection, categorization, theory building" were developed (Saldaña 2013 p. 4)
Axial Coding	 "Interconnections are made among [emerging] categories and subcategories [of systems theory pathologies]. Here the focus is on determining more about each category in terms of: Conditions that give rise to it The context in which its embedded The strategies that people use to manage it or carry it out The consequences of those strategies The researcher moves back and forth among data collection, open coding, and axial coding, continually refining the categories and their interconnections as additional data are collected" (Leedy & Ormrod, 2010, p. 143). During axial coding, further refinement of system pathology categories was undertaken – including development of relationships to develop a more synthesized categorization of a coherent whole of system theory-based pathologies. These pathologies are organized and grouped together since "they share some characteristic" (Saldaña, 2013, p. 9) that make them "look

Table 29 (cont.)

Selective Coding	"The categories and the interrelationships are combined to
	form a <i>story line</i> that describes 'what happens' in the
	phenomenon being studied" (Leedy & Ormrod, 2010, p. 143).
	During selective coding, a storyline for metasystem
	pathologies identification was developed. During this phase of
	the Grounded Theory Method, all pathology 'codes' and
	'categories' were integrated to develop a central/core idea
	emerging from data and "appears to have the greatest
	explanatory relevance" in the research (Corbin & Strauss,
	2008, p. 104)
Theory Development	"A theory, in the form of a verbal statement, visual model, or
	series of hypothesis, is offered to explain the phenomenon in
	question. The theory depicts the evolving nature of the
	phenomenon and describes how certain conditions lead to
	certain actions or interactions, how those actions or
	interactions lead to other actions, and so on, with the typical
	sequence of events being laid out. No matter what the form of
	the theory takes, it is based entirely on the data collected"
	(Leedy & Ormrod, 2010, p. 143). A verbal narrative of the
	developed theory (construct) of metasystem pathologies
	identification (MPI) is provided in Chapter V – including its
	relationship to problem formulation in systems-based
	methodologies for complex system understanding

For this research, it can be said that the process of data analysis began with the Codebook for Systems Theory as depicted in Appendix A. In this codebook, each of the 30 concepts of systems theory (Adams et al., 2014) were recorded as 'codes' in a Microsoft Office's Word 2013 document and synthetized for pathological meaning. Table 30 provides properties of the codebook as modified from Saldaña's (2013) to support the present research purposes. This table was the basis for an expanded view of systems theory as well as initial development of systems theory-based pathologies.

Short description	A code name for the selected concept of system theory
Detailed	A 2-3 sentence description of the coded datum's qualities or
description	properties
Seminal author(s)	Citation(s) of author(s) who strongly influenced developments of
	the selected concept of systems theory
Inclusion criterion	Conditions of the concept or phenomenon that merit the code
	inclusion in this research
Exclusion criterion	These are exceptions or particulars of the datum that do not merit
	the code's inclusion in this research
Typical exemplars	1-2 examples of data that best represents the code
Atypical	An extreme example (if necessary) of data that still represent the
exemplars	code
'close' but 'no'	An example (if necessary) of data that could be mistakenly be
	assigned this code
Relevant note	Initial insights into how the code is relevant to phenomenon of
	complex problem formulation
Aspect of	Initial insights into pathological issues based on the 'code'
pathology	

Table 30: Properties of Initial Codebook for System Theory

Later, each systems theory concept was (re)analyzed using QSR International's NVivo 10 software package. In this analysis, each concept of systems theory was imported and coded as a distinctive 'text unit' and analyzed for meaning related to complex system problem formulation in NVivo 10. Figure 23 provides an illustration of the NVivo 10 interface used in this research. The left side of this figure illustrates the 'text units' from different authors that were coded for various concepts of systems theory. In this instance, 'law of complementarity' is selected to demonstrate the 'text data' used in developing codes for pathology related to law of complementarity. Some 'text units' were imported into NVivo 10 as 'memos', since it is not possible to import more extensive data sources such as textbooks into the software. Memo entries included 'analytic memos' which are defined as "not just as a significant word or phrase you applied to a datum, but as a prompt or trigger for written reflection on the deeper and

complex meanings it evokes" (Saldaña, 2013, p. 42). More specifically, Mason (2002) notes that analytic memos enable "thinking critically about what you [the researcher] are doing and why, confronting and often challenging your own assumptions, and recognizing the extent to which your thoughts, actions and decisions shape how you research and what you see" (Mason, 2002, p. 5).

Figure 23: A Screenshot of QSR International's NVivo 10 Used in this Research

To initiate a grounded theory development of themes pertinent to problem formulation --- the data used for articulating concepts of systems were coded for pathology meaning. This was undertaken against the pathology perspective articulated for the research. This perspective included systems theory-based circumstances, conditions, factors, or patterns that act to limit system performance or lessen system viability and growth such that the likelihood of achieving performance is reduced (Barnard, 1946; Beer, 1984; Keating & Katina, 2012). The 'text data' in literature that were identified during data collection were coded for possible issues affecting system performance. Beer's (1984) notion of inadequate use of concepts of systems theory and Katina's (2015a; 2015b) suggestion of direct violation and not knowing the utility of laws, principles, and theorems of systems theory in design, execution, and evolution of newly designed or operating systems, proved useful. The listing of pathologies elaborated and changed over time based on discovery of new concepts of systems theory in the literature. The pathologies were developed by reflecting on the meaning of concepts of systems theory in relation to problem formulation.

The inductive approach undertaken in this research is consistent with the literature guiding researchers pursuing qualitative research (Auerbach & Silverstein, 2003; Boyatzis, 1998; Butler-Kisber, 2010; deSantis and Ugarriza, 2000; Saldaña, 2013). In inductive research, a researcher extracts "significant statements" (Butler-Kisber, 2010, p. 50) from data, "formulating meanings" (Butler-Kisber, 2010, p. 61) about them through the researcher's interpretation, and clustering meanings into coherent 'codes' and 'categories' with written descriptions supported by the text data. At the point of saturation, which was reached when no new unique ideas could be developed from data, a total of 362 codes describing possible issues affecting system performance had emerged. The themes associated with the 362 codes were then grouped to form an initial set of systems theory categories of circumstances, conditions, factors, or patterns that act to limit system performance emerged had emerged. A total number of 83 categories emerged from breakdown of concepts of systems theory. In grounded theory, an initial grouping of codes is done to discover "how various themes are similar, how they are different, and what kind of relationships may exist between them" (Saldaña, 2013, p.

178). This activity is referred to as **open coding** and the results of this activity are provided in Chapter V. The researcher then moved into axial coding activity.

In grounded theory, **axial coding** is used for "linking seemingly unrelated facts logically [and] fitting categories one with another" (Morse, 1994, p. 25). In this research, axial coding helped establish relationships among the developing system theory categories to enable further refinement of the developing pathologies. Following advice from Birks and Mills (2011) and Saldaña (2013), the researcher focused on different patterns such as conditions (i.e., similarities, differences, and sequencing), context, correspondences, and consequences that could be used to characterize different pathology categories. Saldaña (2013) notes that "before [relevant] categories are assembled, your data may have to be recoded because more accurate words or phrases were discovered for the original codes; some codes will be merged together because they are conceptually similar; infrequent codes that seemed like good ideas during First Cycle coding [open coding] may be dropped altogether because they are latter deemed 'marginal' or 'redundant' after the data corpus has been fully reviewed" (Saldaña, 2013, p. 207).

This axial coding approach proved essential in uncovering new relationships between the developed categories. QSR International's NVivo 10 software package proved useful in this aspect of research. The Query section of the software was used to uncover subtle data trends concerning word frequencies and overlaps in the categories. The software package gives the researcher the ability to view coded data units from a top down perspective to uncover potentially different interconnections. These were used refine groupings of pathology conditions.

To maintain principles of the Grounded Theory Method, the researcher went back and forth between open coding and axial coding to ensure that there existed a sufficient set of pathology categories for problem formulation rooted in concepts of systems theory. At saturation, a total of 15 initial major groupings of systems theory-based pathologies emerged from a set of 83 system theory categories. These 15 major groupings emerged through a critical examination of potential interrelationships among the seeming different 83 categories. The process of reducing 83 categories into 15 major grouping is consistent with Saldaña (2013) who suggest that "your First Cycle codes (and their associated coded data) are reorganized and reconfigured to eventually develop a smaller and more select list of broader categories, themes, concepts, and/or assertions" (Saldaña, 2013, p. 207). Yet the goal is "not to necessarily develop a perfectly hierarchical bullet-pointed outline or list of permanently fixed coding levels during and after this cycle of analysis" (Saldaña, 2013, p. 208). Once the 15 major groupings appeared integrated and there emerged no new categories without going into further abstraction, the researcher took this as an indication to transition into the next phase of grounded theory coding, selecting coding.

However, it was important to note that categories in this phase of grounded theory might be artificial. This view is supported by Wertz et al. (2011) research which suggests that "human life [and affairs] is of a piece, multilayered, contradictory, and multivalent, to be sure, but the strands are always interconnected" (p. 232). This is why, Saldaña (2013) suggests that "some interpretive leeway is necessary [and that] imagination and creativity are essential to archive new and hopefully striking perspective about the data" (p. 208).

The 15 categories appeared to be "the most salient categories" (Charmaz, 2006, p. 46) that could be grounded in the systems theory data to support "metasynthesis" (Saldaña, 2013, p. 207) of systems theory concepts as related to pathologies for problem formulation. In essence, the researcher took "to determine which [categories] in the research are the dominant ones and which are the less important ones...[and to] reorganize the data set: synonyms are crossed out, redundant codes are removed and the best representative codes [of pathologies] are selected" (Boeije, 2010, p. 109). The results of execution of the axial coding activity and the resulting major groupings are provided in Chapter V. Following completion of axial coding, the next phase of grounded theory coding, selective coding, further refined major groupings into metasystem pathologies.

Selective coding enables to achieve integration among categories developed in open and axial coding (Birks and Mills, 2011; Leedy & Ormrod, 2010; Glaser & Strauss. 1967; Strauss & Corbin, 1990). In fact, Saldaña (2013) refers to this activity as "an umbrella that covers and accounts for all other codes and categories formulated thus far in grounded theory analysis" (p. 223). It forms an integration phase where the search for the primary theme of the research is initiated (Birks & Mills, 2011; Glaser & Strauss, 1967; Leedy & Ormrod, 2010; Saldaña, 2013; Strauss & Corbin, 1990).

Initially, this process proved to be a difficult one as the different categories could not be integrated into one 'core category'. A core category has to be "abstract enough to encompass all [systems theory-based pathology categories related to problem formulation] that has been described in the [research] story" (Strauss & Corbin, 1990, p. 120). Eventually, the researcher settled on terms *metasystem pathology*. This was primarily influenced by two factors: First, this research was about a 'wide' range of listing of pathological conditions that might act to limit performance and lessen viability of complex systems. Second, the use of a grounded theory coding scheme – especially the activities of open and axial coding, could enable the researcher to group categories beyond any one grouping of the pathology categories. Consequently, the researcher adapted the term 'meta' from the systems language to suggest 'beyond and above' in describing a wide variety of issues that might be explored during problem formulation phase – to be identified as pathologies (Beer, 1979; Bunge, 1974; Krippendorff, 1986). This section of research was also enhanced by contrasting categories (i.e., systems theory-based pathologies) to an initial perspective on metasystem pathologies as developed in Chapter II along with notions of categorizing concepts of systems theory as postulated by Young (1964), Troncale (1977), and Adams et al. (2014).

In all, eight metasystem pathologies were developed. They constitute of several systems-theory based pathologies. While these eight metasystem pathologies represent integrated themes in systems theory-based pathologies, they are in themselves "not the theory itself, but an abstraction that models the integration" (Glaser, 2005, p. 17). The results of execution of the selective coding activity are provided in Chapter V. At this stage in research, the Open, Axial and Selective coding presented codes and categories that "have relevance for, and [can] be applicable to, all cases [systems theory concepts] in the study. It is the details included under each category...through the specifications of properties and dimensions, that bring out the case differences and variations within a category" (Glaser, 1978, p. 148).

Grounded theory research often concludes with a central idea. A central idea is a theory and might take a form of a "verbal statement, visual model, or series of

hypothesis, is offered to explain the phenomenon in question" (Leedy & Ormrod, 2010, p. 143). Saldaña (2013) echoes similar sentiments when suggesting that "The central/core idea may lie in the name of one of the codes or categories developed thus far, but it may also emerge as a completely new word or phrase that subsumes all of the other above [previously articulated codes and categories]" (p. 225). This is also consistent with Corbin and Strauss' (2008) notion of developing a 'core category' "that appears to have the greatest explanatory relevance" (p. 104) for the phenomenon under study.

In accordance with Saldaña (2013), the researcher formed theory (i.e., the *Metasystem Pathologies Identification*) construct by reflecting on codes and categories as developed from the data of systems theory. In this research, the 'central/core' idea is presented as a statement accompanied by a conceptualization describing the phenomenon of metasystem pathology. The accompanying narrative describes how the codes and categories of systems theory-based pathologies relate to the central/core idea. This also includes descriptions of supporting context, conditions, and interrelationships within the frame of problem formulation for systems-based methodologies in complex systems. This aspect of research also "identif[ies] any variations within the developing theory" (Saldaña, 2013, p. 227). The issue of variations is essential in this research since, "…By focusing on a single variable [central/core idea], the research agenda may become one-dimensional rather than multi-dimensional" (Dey, 1999, p. 43). Metasystem Pathologies Identification (MPI) construct is presented in Chapter V.

The three activities described in this section - Open, Axial, and Selective Coding as well as the resulting construct are interrelated and did influencing another. Figure 24 is provided to illustrate this relationship as well as expected output of each phase.

Figure 24: The Interrelated Activities of GTM Undertaken in this Research

Once systems theory-based pathologies were developed, a team comprising of

eight members with advanced knowledge of the research were asked to provide feedback.

These members had to meet a set of minimum qualifications as articulated in Table 31

below. A summary of their feedback is discussed in Chapter V.

Qualification	Criteria
Education	Earned doctorate in complex systems, engineering management, systems engineering, systems of systems engineering, or engaged in a doctoral level program in one of these areas
Experience	Experienced in the field of systems, well-read researcher, author, or speaker with commercial or government systems engineering and systems-based methodologies

Table 31: Criteria for Reviewing Systems Theory-based Pathologies

As the research was ongoing, there emerged an opportunity to 'face' validate the newly established metasystem pathologies identification and its systems theory-based pathologies. 'Face' validation provided a substantive value to ideas developed in the theory development phase. It is important to note that the 'face' validation was targeted to the ability to show utility of the theoretical for practice. The establishment of validation of the theoretical development of the grounded theory based theoretical construct is contained within the performance of the method itself. The design and activities of a mixed case-survey study for 'face' validation of the systems theory-based pathologies of this research are the subject of the following section.

4.2.3 Case Application Phase

The purpose of this section is to provide details on a mixed case study design used to face validate the developed construct for metasystem pathology identification. The case study phase of research responds to Research Question Two: *What results from the deployment of the developed metasystem pathologies identification construct in an operational setting?* In this section, a link between theory development and the case application phase is established. Also included is detailed information on the activities undertaken in the mixed case-survey design including data collection, data analysis, and reflections consistent with Yin's (2009) formulation of case study research design. Figure 25 is provided to illustrate an overview of activities for the case application for this research.

Figure 25: Activities of Case Design Approach, Designed from Shaughnessy et al. 2011 and Yin, 2009

4.2.3.1 Case Study Planning

Face validation of metasystem pathologies identification construct and the constituent pathologies in an operational setting required a detailed implementation design and planning. The purpose of this planning activity was to ensure that the results of the case could provide a relevant input pertaining to pathological conditions in an operational setting. To pursue this purpose, a mixed case-survey design approach was selected. This approach is especially recommended when a researcher is interested in a specific unit of analysis, a case (Yin, 2009). The survey part of the research was needed in connection with data collection (Shaughnessy et al. 2011). Consequently, to achieve the desired rigor related to case study research design, the following factors were considered relevant:

4.2.3.1.1 THE NEED FOR A UNIT OF ANALYSIS

A unit of analysis is defined as a "case" (Yin, 2009, p. 29) under study. The concept of a unit of analysis encompasses an "event or entity other than a single individual. Case studies have been done about decisions, programs, the implementation process, and organizational change" (Yin, 2009, p. 29). In this research, the targeted unit of analysis is identified as an organization (system). An organization is a complex multiminded sociocultural system with a specific purpose that may not be understood by analysis of component parts (Ríos, 2012). In this case, an organization is not limited to a governmental, non-profit or private, or an academic organization. The unit of analysis is used as a focus of the case study for purposes of 'face' validation of the applicability of the systems theory-based pathologies to an operational practice setting. Specifically, a unit of analysis is used for establishing the capacity for application of pathological concepts identified in the theory development phased to an operational setting.

Two indicators were developed as part of preparation work to assess pathologies. First was the degree of existence of pathology (P_E) in the unit of analysis. P_E was measured in terms of participant agreement on how a statement about a pathology accurately depicts the condition of the unit of analysis. These survey questions are presented in Chapter V. Participants were asked to provide their responses based on a seven point scale as indicated in Table 32. A seven-point scale was preferred over, say a five-point scale; since literature indicates that a seven-point scale is more reliable and offers stable results (Bandalos & Enders, 1996; Comrey, 1988; Nunnally, 1978; Preston & Colman, 1999).

Measure	Measured on a seven point Likert scale						
strongly disagree	disagree	disagree somewhat	undecided	agree somewhat	agree	strongly agree	

Table 32: A Seven-Point Scale for Assessing P_E

The second indicator for assessing pathology was the "range of possible effects" (ASCE, 2009, p. 16) associated with the existence of the pathology (P_C) in the unit of analysis. P_C was measured in terms of participant agreement on the degree to which statement of pathology impacts the unit of analysis. Table 33 illustrates a seven-point scale used in connection with P_C . The intersection of P_E and P_C provided an X-Y plot of pathologies the unit of analysis.

Table 33: A Seven-Point Scale for Assessing P _C						
Measured	on a seven	poin	t Likert sca	le		
negligible	very low	low	moderate	high	very high	extreme

4.2.3.1.2 A WILLINGNESS FOR MEMBERS OF THE UNIT OF ANALYSIS TO WORK WITH THE RESEARCHER

To collect data pertinent degree of pathology existence and degree of consequences, the researcher needed to 'interact' with members of the unit of analysis. The process of data collection cannot take place without the cooperation of members of the organization (system). This agreement is essential on two fronts: (1) members of the unit of analysis (i.e., participants) are experts in the unit of analysis under study and (2) true to the holistic nature of this research, the different perspectives of participants reveal different 'truths' about phenomena of interest. Participants' perspective on their organization (i.e., unit of analysis) is the basis for P_E and P_C . Thus, development of these perspectives within the unit of analysis serves to provide a 'face' validation of the developed metasystem pathologies construct and its related systems theory-based pathologies.

4.2.3.1.3 A PROVISION OF ANONYMITY FOR THE UNIT OF ANALYSIS AND ITS MEMBERS

Some units of analysis require the provision of anonymity (Shaughnessy et al. 2011). The unity of analysis in this study was no different. The researcher ensured that the unit of analysis and the rights of participants in the unit of analysis were protected through anonymity and confidentiality. The software used in data collection, Qualtrics © software, was used to conceal the identities of individuals whose perspectives shaped this research. The researcher provided the participants with information regarding opting out at any time and well as the ability to change responses before submission of the survey. Finally, since the attributes of individual participants were masked, only participant numbers were used as well aggregated results of the analysis.

4.2.3.1.4 DEFINITION OF PROCEDURES AND TOOLS FOR MEASURING PATHOLOGIES

In addition to the above specifications, the researcher established qualification of an acceptable organization to be considered as a unit of analysis. Table 34 lists these qualifications. These qualifications ensured that an appropriate organization could be selected. Following agreement for participation, the researcher then introduced the research and guided the administration of the anonymous on-line survey instrument, Qualtrics © software, in the operational setting.

Criteria for qualification	Relevant observations
The unit of analysis had to be in existence	The statements of pathologies were crafted
	in relation to an existing system
The unit of analysis had to be meet the	There would be no need to engage in
requirement for a complex system	identification of pathologies in a simple
	system
Participants had to have sufficient	Pathologies exist at a deeper level of the
knowledge of the state of governance for	system. With all likelihood, certain
the unit of analysis	members of the system might not know the
	inner workings of the system. In the current
	research, the system owners provided a list
	of participants who had sufficient
	knowledge to assess the state of
	governance for unit of analysis (i.e.,
	organization)
At least nine participants of the	The literature indicates that there is no
organization had to agree to participate in	required number of participants for a
the study corresponding to George Miller's	qualitative research study (Guest, Bunce, &
(1957) seven minus or plus two	Johnson, 2006). In fact, Barker and
	Edwards (2012) suggests that 'it depends'
	on many factors including context of the
	study

Table 34: Qualifications for an Acceptable Unit of Analysis

4.2.3.2 Data Collection

To enable data collection, the researcher set up a web-based survey in Qualtrics© software that participants could use to evaluate their unit of analysis. The questions, more accurately, statements that participants responded to, were developed from the systems theory-based pathologies. These statements were extracted from systems theory-based pathologies to enable simplification of the concepts to the unit of analysis. In all 88 survey statements were created from the 83 system theory-based pathologies that emerged in the theory (construct) development phase. The survey was designed to enable participants to anonymously provide their evaluation of pathologies in the unit of analysis.

The participants were asked to provide their assessment of the unit of analysis along P_E (i.e., the degree of existence pathology) and P_C (i.e., the degree of consequence of existing pathology). Figure 26 represents an example that was provided to the participants in the survey.

Figure 26: An Illustration of Intersection of P_E and P_C for this Research

The premise of this part of data collection was to establish applicability of inductively developed systems theory-based pathologies in an operational setting. Table 35 shows the meaning each scale as associated with P_E . Likewise, Table 36 elaborates on the meaning of each scale associated with P_C .

If participant selects:	This means:
strongly agree	Participant believes that this pathological condition exists (i.e., very detectable)
agree	Participant believes that this pathological condition exists (i.e., a lot detection)
agree somewhat	Participant believes that this pathological condition exists (i.e., little detection)
undecided	Participant is not sure as to the level of which pathology exist
disagree somewhat	Participant believes that this pathological condition does not exist (i.e., rarely detected)
disagree	Participant believes that pathological condition does not exist (i.e., none detected)
strongly disagree	Participant believes that this pathological condition does not exist

Table 35: A Range of Possible Reponses to the P_E Assessment

Table 36: A Range of Possible Responses to the P_C Assessment

If participant selects options:	This means:
extreme	Pathology condition has extreme impact on the unit of analysis
very high	Pathology has a very high degree of consequences on our operations
high	Pathology condition has high impact on the unit of analysis
moderate	Pathology condition has moderate impact on the unit of analysis
low	Pathology condition has low impact on the unit of analysis
very low	Pathology condition has very low impact on the unit of analysis
negligible	Pathology condition has no impact on the unit of analysis

Additionally, the survey included two open-ended questions at the end where participants could provide comments on pathologies as well as the utility of the survey itself.

4.2.3.3 Data Analysis

After data collection, the researcher examined the data to provide insights on pathologies with respect to the unit of analysis. The survey results are plotted on an X-Y axis where the X axis represents P_E while the P_C is represented by the Y axis. Three general statements could be inferred from the X-Y plot (i.e., graph). First, there are three general regions for the graph. The first region ranges from *agree somewhat-Negligible* on the X-axis and diagonally extends to *Strongly Disagree-High* on the Y-axis. The second region covers between *Agree–Negligible* and diagonally extends to *Strongly Disagree-Very High* and *Disagree-Extreme*. The third region is presented by the reminder of the space. These regions are presented as means for analyzing a unit of analysis Figure 27 represents these regions.

Figure 27: Major Regions for Pathological Conditions in this Research

These regions begin to establish relative importance of pathologies that could serve to distinguish pathologies. This is especially the case where a pathology is located in, for example, *strongly disagree-negligible* as opposed to *strongly agree- extreme*.

Second, the intersections of P_E and P_C assessments for all 88 statements could be plotted in the different regions and differentiated. Figure 28 represents an example of pathological assessment of one participant's view of P_E and P_C on six pathologies.

Figure 28: A Participant Perspective Assessing six Different Pathologies

Third, assessments of different participants could be plotted to indicate varying perspective on the same pathological statements. Figure 29 represents an example of six participants' view of the *same* pathology.

Figure 29: An Example of Six Participant Perspectives on the Same Pathology

These representations provide a unique visual profile for a unit of analysis along the concepts of pathologies affecting system performance. A pathological profile could then be used to inform enhanced problem formulation for complex systems. This design application shows a clear role of systems theory in providing a grounded theoretical basis identifying issues that can be feed to further analysis of complex systems to enables complex system development. More specifically, this design could be used to surface potential systemic issues affecting viability of complex systems based on the metasystem pathologies construct as supported by systems theory-based pathologies developed during theory (construct) development phase. The results of execution of this design are presented in Chapter V.

4.2.3.4 Case Reflections

The reflections section provided the opportunity for a deliberate critical analysis of the case application. A reflection in this sense provided a certain measure of judging the research especially the ability to transfer to the theoretical research into an operational setting. This section includes discussions on: (1) evidence that disconfirmed the ability to discover the existence of pathologies in the unit of analysis. More specifically, discovery by listing the degree of existence of pathologies in the unit of analysis is provided. The researcher sought to 'see' pathologies that are marked in the range of 'strongly disagree' to 'undecided.' These were considered to be non-existent in the unit of analysis, (2) assertions regarding pathologies in the unit of analysis were developed. As indicated, perspectives of participants will vary along their assessments of P_F and P_C on the same pathologies. These differences are highlighted along with possible 'clusters' of agreements among different participant perspectives. Figure 30 shows two possible clusters, (3) reflecting on any changes that could be made undertaken to improve the developed construct and its related pathologies. The Grounded Theory Method for theory development, suggests that researchers have an open mind regarding developing theories and to be flexible enough to capture any emerging issues that could enhance the theory (Merton, 1948), and (4) developing implications and suggestions for the theoretical construct transfer to the operational setting. This section discusses elements of the case application design that could be improved to enhance the execution of pathologies identification for problem formulation. A detailed discussion of these reflections is presented in Chapter V.

Figure 30: An Example of What Appears as Diverging Perspectives on the Same Pathology

Naturally, the 'conclusion and write up' phase represents high-level remarks pertinent to the case study application, focused on the second research question. This section of research is intertwined with theory (construct) development as well as the case application phase. Specifically, the results of the case application are catalogued and serve as findings for the second research question. Chapter VI serves to provide elaborated interpretation of the results and implications emanating from the case study application.

4.3 CHAPTER SUMMARY

This chapter introduced research designs for: (1) a grounded theory (construct) development --- the *Metasystem Pathologies Identification* and its related systems theory-based pathologies and (2) 'face' validating systems theory-based pathologies in an operational setting. First, an overall view of the research methodology was presented to

offer a logical order that was followed for execution of the research. Detailed accounts of three phases (i.e., Exploration, Theory Development, and Case Application) and their associated activities were provided. The exploration phase lays the groundwork for the area of interest, research questions, and development of the appropriate detailed research design. The theory development outlined the specific procedure and implementing techniques for the Grounded Theory Method of inductive discovery of systems theorybased pathologies and the development of a central/core idea. Finally, a detailed account of the case study design for examination of the pathologies in an operational setting was provided. This design provided a 'face' validation for the capability and utility of the theoretical construct for system pathologies to be applied in an operational setting. This chapter also included specific strategies for data collection and analysis for the case study application in the targeted unit of analysis. Therefore, this chapter serves as a guide that enabled the rigorous scholarly execution and interpretation of this research in response to the research questions. The following chapter, Chapter V, outlines the results of execution of these designs.

CHAPTER V: RESEARCH RESULTS

Chapter I identified that the purpose of this research was to inductively develop a systems theory-based construct for metasystem pathologies. This development was done to address two primary issues. First is the lack of explicit use of systems theory in problem formulation. Second is to increase focus on metasystemic issues of a higher logical order beyond a single system of interest. Specifically, this research focused on addressing the following research questions:

- 1. How can systems theory be used to generate a metasystem pathologies identification construct to support the problem formulation phase of systemsbased methodologies?
- 2. What results from the deployment of the developed metasystem pathologies identification construct in an operational setting?

To accomplish the purpose of this research, a multi-phase design approach was undertaken. Chapter II was structured to provide the basis for the research questions as developed from literature review as well as a setting for development of metasystem pathologies. In Chapter III, research perspectives informing the inductive research design were established as a foundation for the pursuit of systems theory-based pathologies, the development of a metasystem pathologies identification construct, and the 'face' validation of the pathologies application. Chapter IV then presented a multi-phase research design for execution of the research effort. This design includes use of the Grounded Theory Method (GTM) to inductively develop a metasystem pathologies identification construct and its related systems theory-based pathologies. The design also includes a mixed Case-Survey Study Design (CSSD) method that was used to 'face' validate the operational applicability of the inductively developed systems theory-based pathologies in an operational setting.

In this chapter, the results of the multi-phase research design are presented. First, the results from the GTM application is discussed, starting with the results from Open Coding that was performed on concepts of systems theory. Key codes (i.e., concepts) extracted from systems theory and developed into themes (i.e., categories) related to problem formulation for complex systems are presented. This is followed with presentation of a schema elaborating the interconnections among the categories (i.e., pathologies), developed from Axial Coding. This section also elaborates on how the pathologies where refined and synthesized to form coherent clusters based on shared characteristics. The Selective Coding section discussion of results further refines related pathologies to develop a set of interrelated metasystem pathologies edging closer to a central idea of metasystem pathologies identification. Finally, a fully emerging theory (i.e., construct), Metasystem Pathologies Identification (MPI), is presented.

In the second part of the presentation of findings, the results of the mixed CSSD are presented. This section presents pathology enumeration, variances in participant perspectives, and reflections on the unit of analysis. Figure 31 presents the organization of this chapter.

Figure 31: Organization Diagram for Chapter V

5.1 CONSTRUCT OF METASYSTEM PATHOLOGY IDENTIFICATION [MPI]

This section of the research report sets out to provide a response to the first research question: *How can systems theory be used to generate a metasystem pathologies identification construct to support problem formulation phase of systems-based methodologies?* The results produced a grounded theoretic construct developed through a rigorous examination of systems theory (laws, principles, and theorems) through the Grounded Theory Method. The developed construct (i.e., theory) is consistent with the criteria of a good theory as suggested by Geels (2007), including the following characteristics: 1) generality/scope – where the construct is balanced as not seeking to encompass all universal knowledge and yet not based on personal accounts. 2) simplicity/parsimony – where the construct reduces a large body of knowledge to clear and grounded concepts, and 3) accuracy/specificity – where the construct can be traced to source documents as described by grounded theory method. In support of Glaser and Strauss's (1967) argument that the 'great men' of social sciences had "not provided"

enough theories to cover all areas of social life" (p. 11), the developed construct in this research merely covers an area of 'problem formulation' from a systems theory perspective.

The establishments of the findings from the GTM application are elaborated in the following sections. First, Section 5.1.1 examines the discovery and articulation of key building codes (i.e., ideas) from systems theory (i.e., laws, principles, and theorems) and formation of categories (i.e., pathologies) related to problem formulation as part of the Open Coding activity of GTM. Second, Section 5.1.2 establishes the relationships among categories to develop related major categories – corresponding to the Axial Coding phase of GTM. Third, Section 5.1.3 provides a listing of eight metasystem pathologies that appear to encompass the examined areas of systems theory-based pathologies acting to limit system performance based on shared characteristics – corresponding to Selective Coding. Finally, an emerging construct in the form of a verbal statement combined with a visual model for metasystem pathology identification is provided as a finding of the research.

5.1.1 Open Coding: Codes and Categories

In Open Coding of the GTM, each concept of systems theory (i.e., law, principle, or theorem) was broken down and coded as a distinctive text unit in form of a significant word or phrase or as an analytic memo consistent with Saldaña (2013). Figure 32 presents an example of codes and categories for the concept of law of complementarity.

Law of complementarity Systems theory concept Law of complementarity Any two different perspectives or models about a system will reveal truths about that systems are neither entirely independent nor entirely compatible Bohr, 1928, Clemson, 1984, Krippendorff, 1986, Mehra, 1987, Murdoch and **Concept proponents** Murdoch, 1989, Skyttner, 2005 A GUIDING QUESTION What does it mean to deviate from this concept? CODES **References and Text Data** CATEGORY: Pathology of complementarity System fails to be viable through having one Clemson (1984, p. 206-207): 'need for more than one perspective. This pathology is related to perspective Any two different perspectives (or models) about a system will reveal truths about that system that are neither entirely Different truths not being revealed independent nor entirely compatible Options not being explored (i.e., not having the whole picture) Any management group will hold a variety of perspectives on 'revealing truths' Operating under there and now while the organization. These various perspectives on the ignoring 'there and then' (i.e., the future) organization will reveal different truths about the organization Assuming the environment is static that are only partially independent and only partially anticipating utility of Assuming well-defining and understanding compatible perspectives' of a system It is a mistake to inquire as to which perspective is 'right' The Working under 'ideal' conditions proper question is 'given' our current practical purpose, which Lack of system context operations perspective is most useful? causes massive confusion Failure to be viable through having too many A variety of perspectives is a powerful resource in dealing perspectives. This is related to with a dynamic environment because it is not possible to anticipate which perspective will be needed for some new set There appears to be compatibility 100% of of conditions the times Many perspectives lead to mass confusion A variety of perspectives can lead to mass confusion if the Perspectives not being made explicit or perspectives are not reasonably explicit and understood by all understood concerned. An effective management team should be able to self-consciously adopt a particular perspective as the need

Figure 32: Partial Data Text, Codes, and Category for a Systems Theory Concept of Complementarity

arises

Mason (2002) recommended thinking about research in terms of why it's being conducted and challenging researcher's own assumptions. Following this recommendation and guided by the view that concepts of systems theory explains system behavior and performance, the researcher examined what it meant to *not* adhere to each of the concepts of systems theory. Specific text extracted from concepts of systems theory, which is indicated as 'codes' in Figure 32 above, were used to generate ideas of what could happen if one does not adhere to a selected concept of systems theory. The individual codes where then examined for combination into a higher level 'category' which describes a pathological condition, factor, or pattern that might act to limit system performance. As previously indicated, such pathologies increase the likelihood that a system will not achieve expected performance (Barnard, 1946; Beer, 1984; Bobba et al., 2007; Katina, 2015a; 2015b; Keating & Katina, 2012; Ríos, 2010, 2012; Sheptycki, 2004; Yolles, 2007).

In the case of the systems theory concept of complementarity, nine codes (i.e., anticipating utility of perspectives; causes massive confusion; circular definitions of each other; classical concepts have a limited applicability; need for more than one perspective; perspective might not be compatible; requiring both parties; revealing truths; there must be well-defined elements) were extracted from literature data to form a category of PATHOLOGY OF COMPLEMENTARITY. As a category, it describes a situation in which an organization ignores other perspectives/modes of thinking that are not entirely compatible with the established-predominate perspectives. This view emerges out of contrasting what it means to not adhere to or violating the concept of complementarity in terms of an issue (i.e., problem) that could be of interest during problem formulation. The pathology is supported by literature on systems theory (Clemson, 1984; Krippendorff, 1986; Murdoch & Murdoch, 1989; Skyttner, 2005). Specifically, Clemson (1984) notes, "Any management group will hold a variety of perspectives on the organization. These various perspectives...will reveal different truths about the organization that are only partially independent and only partially compatible." Clemson adds: "It is a mistake to inquire as to which perspective is 'right.' The proper question is 'given' our current practical purpose, which perspective is most useful?" (p. 206). One can then reasonably conclude that having multiple perspectives on missions, goals, or objectives of a system is actually good. In contrast, a system (i.e., an organization) that mistakenly assumes that there is only one

'right' perspective, will shun inclusion of different and yet relevant perspectives that can make important contributions in problem formulation for complex systems. Thus, the different perspectives that could be useful are lost, affecting more holistic and informed problem formulation.

In an organizational setting, this pathology could be explained as direct violation of the concept of systems theory (e.g., complementarity) where management dismisses and ignores other perspectives/models, despite knowing the value of having a variety of perspectives. On the other hand, this pathology might be experienced in an organization where management is unaware of principles of systems theory (e.g., the need to have a variety of perspectives). None of these situations is desirable since the organization could be placed in a situation where the likelihood of achieving performance expectations is reduced due to lack of variety in perspectives. Within problem formulation, the identification of such an issue is vital for system development, growth, and performance. This is especially the case since one cannot predetermine which perspective will be necessary for a complex system in a dynamic environment (Clemson, 1984; Murdoch & Murdoch, 1989). In other words, the lack of appreciation for this particular principle from systems theory creates conditions with implications for systems problem formulation.

In a similar manner the pathologies, as generated from the Grounded Theory Method, were developed for the deviations from the range of laws, principles, and theorems of systems theory to generate 'codes' and 'categories' that could emerge from the data analysis. Open coding concluded when no new ideas emerged from the text data in connection to problem formulation. Notice that this section is purposefully condensed to provide the synthesis of the findings, to avoid making the narrative too long and risk being labeled as 'massive and unreadable' (Yin, 2009). An extensive database of all the text data and memos, from which 'codes' were extracted was saved in NVivo® 10 software. Obviously, the scope of this voluminous data is too large to include in this document. In the presentation of findings, the base datasets are not included, only the direct higher level results of the findings in response to the research questions are included. Where appropriate, examples of the form and structure of data analysis are included.

5.1.2 Axial Coding: Systems Theory-Based Pathologies

In Axial Coding, more 'categories' of pathologies were developed following the GTM. Then the researcher grouped categories to form major categories. This is in accordance with Leedy and Ormrod (2010) who suggest that such major categories can be based on conditions that give rise to the phenomena under study (pathologies), the context within which they are embedded, the strategies associated with how people manage the category, or the consequences of those strategies.

Extending the ideas developed in Open Coding and applying the same logic to concepts of systems theory, the researcher extracted 362 codes from systems theory dataset. There was significant overlap among 'codes' in different 'categories'. However, the meaning of those 'codes' had to be conceptualized in relation to specific 'categories.' These 'codes' are directly related to 83 different concepts of systems theory and are the basis for systems theory-based pathologies. A systems theory-based pathology is a situation in which one inadequately applies systems theory concepts (Beer, 1984). The constant comparison of codes suggested that a pathology can be expressed as either not knowing the utility of concepts of systems theory or having a disregard for concepts of

systems theory in in managing complex systems. In both of these situations, a system is affected (Katina, 2015a). This view is also supported by Keating and Katina (2012) who suggest that these situations reduce the "likelihood of a system [organization] achieving performance expectations" (p. 253). A continuous and rigorous examination of the concepts of systems theory, as articulated in Chapter IV, yielded 83 systems theory-based pathologies. These pathologies evolved in response to the guiding question: *What does it mean to deviate from this concept?* Figure 33 provides the next evolution of codes, categories as well as a statement of systems-theory pathologies.

Category	Codes	Supporting sources	Statement of a systems theory-based pathology				
Pathology of complementarity	 need for more than one perspective revealing truths anticipating utility of perspectives causes massive confusion 	Clemson, 1984	The pathology of complementarity is a situation in which an organization ignores other perspectives models that are not entirely compatible with the established-predominate perspectives including missions, goals and objectives. An organization in this case mistakenly assumes that there is only one 'right' perspective. Thus, different truths contained in				
	 requiring both parties circular definitions of each other 	Krippendorff, 1986	different perspectives are shunned. Murdoch and Murdoch (1989) suggest that this pathology is more likely related to a management style that assumes that the organization operates				
	 classical concepts have a limited applicability there must be well-defined elements 	Murdoch and Murdoch, 1989	under 'ideal' conditions. Moreover, too many perspectives, especially the ones not being made explicit and understood, could cause "mass confusion" (Clemson, 1984, p. 207) in an organization. This pathology is expected in an operation				
	 perspective might not be compatible 	Skyttner, 2005	landscape characterized as ambiguous, complex, interdependent, and uncertain				
Pathology of diminishing returns	 diminishing marginal productivity fixed variables vielding becomes progressively smaller improving methods and tools corresponding change in other variables (e.g., advance in technology) raising subsystem well-being 	Encyclopedia Britannica. 2013	The pathology of diminishing returns is a condition in which management mistakenly assumes that increasing number of workforce increases the productivity of the organization as a whole without expanding the landscape of operations. In farming example, if a farmer with a specific acreage and a specific number of workers decides to increase the number of workers; overall productivity might not increase (Krippendorff, 1986). In fact, the Encyclopedia Britannica, suggests that the output of each worker is reduced and thus affecting the whole organization. There must be a				
	 additional units fixed amounts of the other inputs smaller increments 	Krippendorff, 1986	corresponding change in other variables such as advanced technology and investing in better skilled-workers				
Pathology of requisite hierarchy	 increasing hierarchy of a system 	Adams et al., 2014	The pathology of requisite hierarchy is a situation in which the regulatory body of an organization is not well-designed to				

Figure 33: A Partial Evolution of Codes, Categories, and Statement of Systems Theory-Based Pathologies

In each category (i.e., systems theory-pathology) the name of concept of a

systems theory from which it emerged was kept intact. Appendix B provides a complete

listing of these categories. Having established these pathologies, the researcher continued refining the pathological categories as encouraged in this phase of GTM (Boeije, 2010; Charmaz, 2006; Morse, 1994; Saldaña, 2013). The researcher looked for themes and patterns within the categories. Initially, the researcher relied on a perspective concerning *metasystem pathologies* and their relationships to problem formulation as developed in Chapter II. This perspective is presented in Table 37 along with its related themes.

Pathological Theme	Theme Description
Affecting system	A metasystem pathology is circumstance, condition, factor, pattern,
performance	or issue that acts to limit system performance, or lessen system
	viability and growth at the metasystem level
They emerge out of	A metasystem pathology emerges out of inadequacy associated with
inadequacy use of	the use of systems theory which might be expressed as lack of use of
systems theory	laws, principles, and theorems of systems theory or a direct violation
	of laws, principles, and theorems of systems theory
There is no one	Moreover, a metasystem pathology does not have one correct
'correct'	interpretation. Even if there is agreement on 'existence' of a
interpretation of	pathology, the interpretations concerning the source and meaning
source or meaning	will not necessarily be congruent among observers. Thus, the idea of
	metasystem pathology embraces systems theoretic principle of
	complementarity.
They are influenced by	Metasystem pathologies are also dependent on systems and observer
individual perspectives	perspective. Thus, a pathology cannot exist in absence of attribution
	from an observer. Therefore, there is no pathology independent of
	system observers.
Inclusive of internal	Metasystem pathologies include internal factors and external factors
and external system	acting to limit system performance, or lessen system viability and
factors	growth at the metasystem level.
Inclusive of system	Metasystem pathologies also include system structures, policies,
structure, processes,	activities, or decisions that may hinder systems development,
and actions	viability, or growth.
Can be drawn from	A metasystem pathology is directly drawn from violation of the
violation of metasystem	principles providing for essential metasystem functions. To enable
functions	system viability, systems theory is the basis for developing system
	functions at the metasystem level. Consequently, violations of
	systems theoretic principles affect metasystem functions.
Having effective and	Moreover, in order to perform metasystem functions, there is need to
efficient mechanisms	have effective and efficient implementing mechanisms. Deficiencies
	in such mechanisms also create pathological conditions inhibiting
	system performance and viability.

Table 37: An Initial Research Perspective on Metasystem Pathologies

A rigorous examination of these themes and constant comparison of the codes and categories (i.e., systems theory-based pathologies) suggests systems theory-based pathologies might be characterized in terms of:

- inadequate use of principles governing complex systems
- violation of essential system functions
- having ineffective and inefficient mechanisms implementing the system principle
- areas in which pathology effects the system of interest
- perspective of individuals in interpreting pathology and effects
- management style, policy, activities and decisions of people engaged with the system
- identifying a pathology as existing internal to or external to the system of interest

These themes were then used to develop an initial set of fifteen major groupings of systems theory-based pathologies. Table 38, below, was developed by examining the 83 systems theory-based pathologies in this research. These major groupings present a set of related systemic issues along different conditions that give rise to pathologies for the context within which that are embedded. Consistent with Boeije (2010) and Saldaña (2013), these groupings are referred to as metagroupings since they encompass more than one pathology.

	Category	Category attributes related to pathological conditions
	Dimension	(of/concerning):
1	Adaptation	failing to adapt to changes
2	Communication	failure in communication and transference of messages and information
3	Environment	basis in an external environment
4	Interactions	failing to understand complex system interactions among systems and their environments
5	Learning	failing to learn complex system and providing needed changes
6	Management	having inefficient management styles in managing complex systems
7	Mechanisms	having ineffective mechanisms in place that enable system performance
8	Output/outcomes	affecting actual system expectations - outputs and outcomes
9	Perspectives	human worldview affecting how to approach complex systems
10	Regulating	controlling and regulating systems
11	Resources	allocation of resources
12	Stability	failing to create stability in a system
13	Structure	nature of structure affecting a system
14	Understanding	associated with capacity to discern complexities in systems
15	Viability	balancing tensions among different system dimensions

Table 38: Major Themes for Categorizing Systems Theory-Based Pathologies

This schema was then applied to 83 categories of systems theory-based pathologies. Figure 34 presents a graphical representation of these groupings along with the associated pathologies. Since no new dimensions could be generated, the researcher moved into selective coding to develop metasystem pathologies along with their storylines for problem formulation.

5.1.3 Selective Coding: Codes and Categories

After carefully developing the fifteen major categories using the research perspectives developed in Chapter II, the researcher revisited systems theory in search of any groupings, if any, that might suggest further refinements. This was done to reduce being biased by previous research. This was not an issue for this research since there exists no known groupings of systems theory-based pathologies. There exists no literature on pathologies grouping. However, three groupings for concepts of systems theory, found in literature, appeared to be relevant to this research. First, is Young's (1964) four major categorization of systems theory along the themes of 'systemic and descriptive factors,' 'regulation and maintenance,' 'dynamics and change,' and system 'decline and breakdown.' Table 39 presents these categories along with their descriptions.

Categories	Descriptions
Systemic and descriptive factors	Systems theory concepts that make important system distinctions, classifying large quantities of data, and outlining the basic structure and processes; concepts dealing with system types, structure of systems, internal system organization, and their surroundings
Regulation and maintenance	Systems theory concepts dealing with the regulation, control, and stabilization of systems
Dynamics and change	Systems theory factors dealing with problems of non-disruptive change, responses to altered environmental conditions, and internally generated processes of change
Decline and breakdown	Systems theory concepts emphasizing problems of disruption, dissolution and breakdown in systems

Table 39: Young's (1964) Categories of Concepts of Systems Theory

A second grouping is Raphael Troncale's categorization for concepts of systems theory. Troncale's (1977) categorization is made up of eleven categories, consisting of:

(1) concepts and definitions of systems, (2) systemic interactions and interrelationships,

(3) systemic feedback process, (4) systemic equilibrium processes and states, (5) cyclical systems processes, (6) systemic energy flows, (7) hierarchical structure, (8) systemic evolution, (9) systemic processes of growth and development, (10) systemic decay processes, and (11) systemic information flow. These eleven categories of systems theory concepts merely present "a convenient hierarchical listing of …systems concepts" (Troncale, 1977, p. 34) in support of a linkage proposition construct that was developed by Troncale.

Most recently, researchers at the National Centers for System of Systems Engineering (NCSOSE) at Old Dominion University developed a set of seven 'axioms' into which thirty concepts of systems theory, inclusive of laws, principles and theorems, can be categorized (Adams, 2012; Adams et al., 2014). Table 40 represents the seven axioms of concepts of systems theory.

Categories	Descriptions			
(axioms)				
Centrality axiom	A pair of systems theory concepts describes central to all systems			
Contextual axiom	Systems theory concepts an analysis uses to understand systems in			
	terms of external circumstances and factors surrounding systems			
Design axiom	Systems theory concepts describing imbalance in system resources,			
	their relationships, and how systems should be planned, instantiated,			
	and evolved in a purposive manner			
Goal axiom	Systems theory concepts describing how systemic means and			
	pathways can be used to achieve purposeful behavior			
Information axiom	Systems theory concepts describing how systems create, poses,			
	transfer information as well as how information affects systems			
Operational axiom	Systems theory concepts for guiding system operations in situ			
Viability axiom	Systems theory concepts describing key parameters that must be			
-	controlled to ensure continued existence in environment			

Table 40: Seven Axioms of Concepts of Systems Theory

The researcher used these categorizations to compare and contrast current major groupings of pathologies into the most salient categories, 'metapathologies' (Boeije, 2010; Charmaz, 2006; Morse, 1994; Saldaña, 2013). Certainly, there is no accepted guide or one 'correct' way to group pathologies. In fact, Troncale's (1977) research recognizes that his hierarchical tree of concepts stemming from systems theory was only meant as one of "many [possible] alternative hierarchies [or categories] among P.S.C.'s [Principal Systems Concepts that] could be logically supported and empirically demonstrated for real systems" (p. 36). Similar to Troncale's (1977) view that "many alternative trees [groupings can be] derived from [a] complex, diagraph network [of systems theory concepts]" (p. 36), the researcher was not bound by previous research and sought to develop a new and higher level grouping of the systems theory-based pathologies, insomuch as the groupings emerge from data.

The fifteen major groupings were compared and collapsed into eight emergent categories that appear to provide an umbrella covering the entire set of systems theory-based pathologies. This set of *metasystem pathologies* is clustered along the themes of (1) systemic dynamics, (2) system goals, (3) systemic information flow, (4) systemic process and activities, (5) systemic regulation, (6) systemic resources, (7) systemic structures, and (8) understanding of systems. *Similar to a systems-theory pathology, a metasystem pathology acts to limit system performance. However, rather than treating pathology as isolated issues, metasystem pathologies involve a set of related pathologies, forming a cluster of high-level issues, affecting complex systems such that the likelihood of achieving desired systems-wide performance is reduced.* A metasystem pathology revolves around inadequate use of two or more concepts of systems theory (i.e., laws,

principles, or theorems). Similar to the systems theory-based pathologies developed in Axial Coding, metasystem pathologies involve not recognizing utility of systems theory or a direct violation of a systems theory based principle. The different systems theory pathologies were clustered together since they appear to "share some characteristic" (Saldaña, 2013, p. 9) that make them "look alike" and "feel alike" (Lincoln & Guba, 1985, p. 347). Figure 35 represents the eight higher-level metasystem pathologies.

Certainly, other clusters of pathologies could be developed since one's understanding of systems theory and derived pathologies is "likely incomplete" (Adams, 2012, p. 218). This issue is more pronounced by Troncale's (1977) supposition that "man's inborn limited span of attention and depth of awareness...often inhibits mankind's awareness of 'networks' of or holistic interactions" (Troncale, 1977, p. 36).

Figure 35: A Graphical Representation of Emerging Metasystem Pathologies

Before discussing a synthesis for the eight metasystem pathologies, it is important to recall two critical issues in this research. First, it's important to recognize that this research contributes to the area of problem formulation in systems-based approaches. The breadth of concepts associated with this area of research include such categorizations as *formulating the mess, problem articulation, problem bounding, problem context, problem definition, problem framing, problem identification, problem setting, and problem situation.* The utility of problem formulation as an activity for systems-based methodologies ranges from definition for problems affecting systems to subsequent development effective measure and solutions to such problems. Moreover, this area of research involves the subjective of knowledge and reality as presented by people. Subjectivity is essential in problem formulation since people can choose "certain aspects of reality as being relevant for action in order achieve certain goals" (Dery, 1984, p. 35). This is not surprising since "people [may] hold different views on (a) whether there is a problem, and if they agree there is, (b) what the problem is" (Vennix, 1996, p. 13).

Second, the purview of problem formulation includes identification of factors that may act to limit expected system performance. The need to identify such factors has never been more pronounced than in the 21st century where the operating landscape is characterized by ambiguity, complexity, emergence, interdependence, and uncertainty (Keating et al., 2014; Keating & Katina, 2012; Keating, 2014). Consequently, there is no shortage of methodologies that promote systemic thinking and holistic identification of factors affecting complex systems. As discussed in Chapter II, a key phase of such systems-based methodologies is problem formulation. Although, systems theory is the foundation for holistic system understanding, there is no research that explicitly links systems theory to problem formulation ---- how systems theory can be used to enhance problem formulation, especially articulation of pathologies affecting system performance.

Using activities of the Grounded Theory Method, 'codes' where extracted from systems theory data text to form 'categories' of pathologies supporting the concepts of failure to take notice and/or ignoring the utility of systems theory. Moving back and forth among systems theory data collection and continually refining the categories and their interconnections as additional data were collected yielded 83 systems theory-based pathologies (i.e., conditions and issues that might affect system performance) that were then merged into fifteen major groups. Extending systems theory to the area of problem formulation to articulate systemic issues affecting system performance is not an overreach since it aligns well with aims of systems theory and the bylaws of the International Society for the Systems Sciences (Hammond, 2002; von Bertalanffy, 1968).

Up to this point in research, the findings identified a high-level description of systems theory-based pathologies and their relationships. A detailed discussion of the eight metasystem pathologies that emerged from a metasynthesis of categorizations of systems theory and contrasting them to the major groupings of pathologies is presented in the following sections.

5.1.3.1 Systemic dynamic pathology

This cluster describes a set of systemic pathological issues affecting system performance from the view of the dynamic nature of complex systems. Complex systems continuously interact with other systems to produce performance. This theme emerges from fifteen different concepts of systems theory. In terms of pathology, the theme of systemic dynamic pathology involves not taking notice and ignoring the systems theory concepts that influence the dynamic interactive nature of complex systems, their subsystems, and the interplay with their environment. Table 41 shows the attributes of systemic *dynamic* pathology and its associated element pathologies.

Systemic Dynamic Pathology		
Metasystem	Metasystem pathology dimensions	
pathology attributes		
Pathology of	System is unable to change its structure in response to external disturbances	
adaptation	or it is unable to influence environment and its changes	
Pathology of	There is imbalance in interaction in exchange of resources between system	
dynamic equilibrium	and that which is external (systems and environment)	
Pathology of	Assumptions that behaviors of the system as a whole can be directly inferred	
emergence	through the examination of properties of subsystems, independent of their	
	interaction	

Table 41: Attributes and Dimensions for Systemic Dynamic Metasystem Pathology

Table 41 (cont.)

Pathology of environmental- modification	System fails to undertake efforts to influence its environment to reduce the extent of fluctuations
Pathology of high-flux	The rate of arrival of resources to systems is less than that necessary to address failures. Resources need to arrive as soon as failure occurs
Pathology of morphostasis	System stability is reduced through resistance to change (preferring the <i>status quo</i>)
Pathology of over- specialization	System becomes too specialized to initiate changes or accommodate other system demands
Pathology of polystability	Managing a system as though system level equilibrium is similar to that of its subsystems
Pathology of punctuated equilibrium	The long periods of stasis (i.e., relative calmness) creates a false sense of safeness for a system until a catastrophic event is experienced
Pathology of relaxation time	A system experiences too many changes at the same time; becomes incapable of assimilating change; becomes chaotic
Pathology of safe environment	System fails to create a permanently stable environment
Pathology of self- organization	Failure to work with the self-organizing tendencies of complex systems; global patterns of organization dominate instead of fostering local interactions
Pathology of steady state	Focus is placed on steady state (i.e., capability) of a system whole while ignoring capabilities of subsystems
Pathology of system environment	Failure to understand lines of demarcation such that there is confusion as to what is part of the environment and what is not
Pathology of the Red Queen	System fails to survive because of inability to compete with other systems in the same environment. Beyond adapting, a system must expend all its energy to stay in the same place

5.1.3.2 Systemic goal pathology

This cluster describes a set of systemic pathological conditions affecting system performance in terms of goals. This theme emerged from systems theory concepts that suggest that complex systems have goals and those goals can be achieved through effective use of six concepts of systems theory. In terms of pathology, the theme of systemic goal pathology involves not taking notice and/or ignoring six concepts of systems theory that appear to affect the goal-seeking behaviors of complex systems. Table 42 shows attributes of systemic *goal* pathology and its associated element pathologies.

Systemic Goal Pathology			
Metasystem pathology attributes	Metasystem pathology dimensions		
Pathology of equifinality	Managing a system with the belief that there exists only one approach/method to achieve a final desired state - including goals, missions, and objectives		
Pathology of multifinality	Tendency to draw premature conclusions based on previous experiences; a particular conclusion is reached since initial operation conditions of a system of interest appear to be similar to another situation		
Pathology of purposive behaviorism	System purpose is unguided (i.e., not goal-oriented) and primarily based on <i>intended</i> results as opposed to what the system is actually producing, including outcomes that are indirectly related that are experienced as unintended consequences		
Pathology of satisficing	The management team actively searches for the best possible solution (i.e., optimization) instead of searching for appropriate solution(s) in a given situation with the information at hand; a good-enough solution		
Pathology of unity	Lacking a clear purpose that serves to internally unify and externally distinguish the system		
Pathology of viability	Key system parameters are not controlled and maintained within their physiological limits		
	Productive subsystems lack capability to survive as independent systems		

 Table 42: Attributes and Dimensions for Systemic Goal Metasystem Pathology

5.1.3.3 Systemic information pathology

This cluster describes a set of systemic conditions affecting a system in terms of information and communication. Systems theory suggests that performance of a complex system is related to ability to create, transmit, receive, and extract meaning from information (i.e., messages). This theme emerges from four specific concepts of systems theory suggesting information and information flow is essential in dealing with complex systems. Again, in terms of pathology, the theme of systemic information pathology involves not taking notice and/or ignoring the concepts of systems theory that relate to communication and information transference. Table 43 shows attributes of systemic *information* pathology and its associated element pathologies.

Table 43: Attributes and	Dim	ens	ions	for	Syste	mic	Inf	ormation	Metas	ystem	Patholog	5Y
	2			7 0								

	Systemic Information Pathology
Metasystem pathology attributes	Metasystem pathology dimensions
Pathology of channel capacity	Ineffectiveness in transmitting different messages; channel needs to be modified to transmit; does not account for noise (i.e., disturbance) in transmission; information not received in a timely manner
Pathology of communication	Receiver of information is unable to receive information as intended by the sender; it involves issues emanating from communication mechanisms that enable processing, storing, and retrieval of information
Pathology of equivocation	Inefficiency in delivering intended concealed messages from one point to another so that only the intended receiver can decipher and understand its meaning; even though the message is a secret, anyone getting hold of the massage is able to decipher and understand the secret
Pathology of information redundancy	Information transmission (i.e., communication) is not enhanced though redundant information transmission; redundant information transmission is viewed as a waste of resources since it is repetitive and requires extra channel capacity; inability to combat noise which works to reduce efficiency (i.e., bits of information per second that can be sent and received) and accuracy (i.e., clear reception of message)

5.1.3.4 Systemic process pathology

F

This cluster describes a set of systemic conditions affecting processes of complex systems. This theme emerges out of six concepts of systems theory describing several processes --- internal and external to the system that must take place to ensure system development, stability, and continued viability. Again, in terms of pathology, the systemic process pathology emerged out of not taking into account and/or ignoring systems theory associated with activities/processes and outputs of such activities. Table 44 shows attributes of systemic *process* pathology and its associated element pathologies.

Table 44: Attributes and Dimensions for Systemic Process Metasystem Pathology

Systemic Process Pathology			
Metasystem	Metasystem pathology dimensions		
pathology attributes			
Pathology of	Failure to focus on the underlying processes/relationships in the system		
consequent	responsible for producing the results (desirable/undesirable); focus is		
production	increasingly placed on the outcome/outputs themselves as opposed to the		
	producing system		
Pathology of	Mistakenly assuming that productivity can be increased simply by increasing		
diminishing returns	the number of workforce; investing in better technology or improving the		
	skills of the existing workforce are ignored		
Pathology of events	Expecting a system to process and accommodate all scenarios without		
of low probability	differentiation; attempting to account for all possible scenarios is too complex		
	to be workable and jeopardizes those fundamental processes and scenarios		
	critical to system survival		
Pathology of	System is able to take in and transform information but lacking in the ability		
maximum power	to increase the transformation capacity to accommodate increases; the system		
	is slow to keep up with the information being generated		
Pathology of	Preference is placed on either the social (i.e., soft/human) or the technical		
sociotechnicality	(i.e., technology) aspects of the system as opposed to a joint optimization of		
	both social and technical; one aspect is promoted as more important than the		
	other		
Pathology of sub-	Making independent improvements to processes in subsystems to improve		
optimization	performance the system whole; optimizing subsystems rather than trying to		
	design and create a process that supports system level performance		

5.1.3.5 Systemic regulatory pathology

This cluster describes a set of systemic conditions affecting a system in terms of control and regulation. This theme emerges from concepts of systems theory suggesting that a certain level of control is required to guide complex system development and enabling growth, stability, and continued viability. Consistent with previous pathologies, the theme of systemic regulatory pathology involves not taking notice and/or ignoring twenty-one concepts of systems theory such that the ability to achieve and maintain system control is reduced. Table 45 shows attributes of systemic *regulatory* pathology and its associated element pathologies.

Table 45: Attributes and Dimensions for Systemic Regulatory Metasystem Pathology

	Systemic Regulatory Pathology
Metasystem	Metasystem pathology dimensions
pathology attributes	
Pathology of	Subsystems are not afforded the ability to act as independently with respect to
autonomy	taking actions and making decisions; they are over-constrained by a higher
	system
Pathology of	Lacking a governing structure that must relieve tension among different
balance of tensions	subsystems; finding the right balance between independence of subsystems
	and integration of the whole, self-organization and structured design, and
	maintaining a balance between system stability and change
Pathology of control	Lacking effective control mechanisms to preserve system identity: inability to
	remove inappropriate or incompatible goals; inability to consistently achieve
	intended goals; inability to efficiently utilize resources; inability to effectively
	contribute to the higher-level system purpose
Pathology of	Lacking a sufficient number of external connections to the external
cybernetic stability	environment: a system lacks a broad sense of self and responsibility: does not
	exchange information or develop effective controls to provide self-governance
Pathology of	Lacking the ability to reflect on errors and deploy efforts to correct detected
dialecticism	errors: recommendations can be made, but the system lacks ability to
andreetteristit	implement the recommendations
Pathology of	Lacking the ability to improve system behaviors using scanning mechanisms:
feedback	scanning mechanisms are incanable to feeding back information to reduce
recubler	fluctuations: small effects are ignored and in time produce devastating effects
	on the system
Pathology of frame	Lacking an explicit and consistent standard by which system performance can
of reference	be judged: presuppositions and assumptions are not made explicit
Pathology of	Lacking mechanisms to guide and enable a system to return it its pre-set path
homeorhesis	of trajectory following an environmental disturbance
Pathology of	Lacking monitoring mechanisms that are used to alert of any external changes
homeostasis	affecting system such that essential internal variables are not maintained
Pathology of	Lacking means to enable continuous comparison of first iteration to the normal
iteration	and subsequent measures for error detection; the iteration process is overly
	long, overly elaborate, and performing only one iteration
Pathology of least	Electing to progress by selecting a path of high resistance; using methods and
effort	tools that are convenient and not necessarily effective; least efforts are not
	compatible with desired results
Pathology of	Activities that must be undertaken are overly prescribed as to how they must
minimal critical	be done; there is no room for creativity or flexibility
specification	
Pathology of Pareto	Undertaking significant efforts inconsistent with the '80/20 production' curve;
	assuming the existence of a direct 'causal-interrelationship' in system
	performance
Pathology of	Subsystems and their elements are lacking the 'freedom' to decide and act on
redundancy of	behalf of the system as a whole; the speed at which the system responds to
potential command	novel events, information, trends, threats, and opportunities is reduced
Pathology of	Lacking an effective multi-regulatory system body designed to handle variety
requisite hierarchy	at each level of the system
Pathology of	Lacking a system regulator that is well-informed of relevant knowledge
requisite knowledge	essential for viability; regulator lacks ability to select the right actions from a
	knowledge base to address perturbations; taking actions on the basis of trial
	and error in hopes of eventually solving system issues

Table 45 (cont.)

Pathology of requisite variety	The variety of the regulator is not equal to the variety of the situation to be controlled; lacks sufficient capacity to match variety of situations being controlled
Pathology of subsidiarity	Preferring to defer to a higher authority on local issues; elevating subsystem issues (i.e., local) issues to a higher system level; subsystems should only seek system level solutions when they have exceeded their capacity to deal with issues
Pathology of the first cybernetic control	Lacking ability to compare system behavior against a set standard; if the comparison is done, the system might lack mechanisms to continuously undertake commensurate corrective measures and actions
Pathology of the second cybernetic control	Control is a function of communication; a system might go out of control if its communications are incapable of proving sufficient regulatory capacity to address variety
Pathology of the third cybernetic control	Attempting to bring a system into control that hasn't gone out of control; if a system is performing, 'tinkering' may make performance worse

5.1.3.6 Systemic resources pathology

This cluster describes a set of systemic conditions affecting a system in terms of resources and resources utilization. This theme emerges from four concepts of systems theory that suggest a need for resources in enabling system development. In addition, the manner in which resources are utilized can have an adverse effect on system productivity. In terms of pathology, systemic resources pathology involves not taking notice and/or ignoring four concepts of systems theory that aid in effective utilization of resources. Table 46 shows attributes of systemic *resources* pathology and its associated element pathologies.

 Table 46: Attributes and Dimensions for Systemic Resources Metasystem Pathology

Systemic Resources Pathology		
Metasystem	Metasystem pathology dimensions	
pathology		
attributes		
Pathology of	Lacking a surplus of resources; operating a system without sufficient slack;	
buffering	unaware that unused resources become waste and take up space	
Pathology of	Undertaking a measure (e.g., allocation of resources) to improve one part of a	
Pareto optimality	system without knowing the adverse effects to other parts of the system; it's not	
	possible to make one part of the system better without making another part worse-	
	off; the resources being used have to come from somewhere	
Pathology of	Lacking ability to consume a variety of resources available from the environment;	
patchiness	counter to the pathology of omnivory where internal structure can only consume	
	one type of resource; failure to <i>acquire</i> test to determine use of different	
	resources; despite presence of many resources, a system only consumes one type	
	of resource	
Pathology of	Subsystems lacking 'freedom' to decide and act on behalf on the system; a well-	
redundancy of	designed system will provide subsystems the independence necessary to seize	
resources	opportunities; decision making is not conferred to the system level that first	
	receives information and can most expeditiously respond, instead deferring to the	
	chain of command	

5.1.3.7 Systemic structure pathology

This cluster describes a set of systemic pathological conditions pertaining to the structure of a system. Systems theory suggests that all systems can be characteristically organized in certain patterns and relationships to enable achieving maximum performance. In terms of pathology, the theme of systemic structure pathology involves not taking into account and/or ignoring systems theory concepts that describe fundamental structures of systems. Table 47 shows attributes of systemic *structure* pathology and its associated element pathologies.

 Table 47: Attributes and Dimensions for Systemic Structure Metasystem Pathology

Systemic Structure Pathology		
Metasystem	Metasystem pathology dimensions	
pathology		
attributes		
Pathology of	The governance structure is an inverted pyramid; a system has a larger number	
flatness	of administrators relative to that of producers; everyone can't be an administrator	
Pathology of	Lacking a basic structure of a hierarchy; organization and people are not	
hierarchy	organized into an integrated system with appropriate levels of hierarchy that	
	permit regulation necessary to provide appropriate control; using the same	
	regulations at all levels of a hierarchy	
Pathology of	Overemphasizing policy development and procedural elaboration to manage in	
internal	the system; limited efforts are directed towards purposeful system development	
elaboration		
Pathology of	Failing to create new and potentially radically different structures that supports	
morphogenesis	existing structures; frequently allowing new changes without allowing old	
	changes to take hold	
Pathology of	Having internal structures (i.e., pathways) that cannot easily be modified to	
omnivory	increase their capacity to take in a variety of resources	
Pathology of	Lacking a unified structure that provides an unambiguous identity for the	
organizational	system; system goals and those of subsystems are not complementary; having	
closure	subsystems that are too autonomous to support a unified system acting as a	
	whole; extrinsic purpose/goal might exist but system lacks a set of relationships	
Pathology of	that unity subsystem to system and to the environment	
recursiveness	larger viable system	
Pathology of	Inspility to withstand disturbances: temporally failing and then unable to return	
resilience	to previous configuration: only resilient to a parrow range external fluctuations	
Pathology of	Lacking ability to use simple or complex mechanisms to withstand	
robustness	environmental changes without modifying system structure: system not being	
Tooustitess	accustomed to coning with large and sudden changes	
Pathology of	Being too tightly counled together such that a small disturbance is reflected	
senarability	throughout the system; a single breakdown can have a major effect on the system	
	as a whole	
Pathology of	Lacking initiative that maintains information flow between a forming structure	
genesis of	and the system; not allowing sufficient time for a new structure to take shape	
structure		
Pathology of	Having a fuzzy defined line of demarcation that delineates a system and its	
system boundary	environment; lacking minimum description distinguishing the system	
Pathology of	Attempting to address a system independent of the context within which it is	
system context	embedded; not accounting for conditions. or patterns that enable and/or constrain	
	system solution development, system solution deployment, or interpretation	

5.1.3.8 Systemic understanding pathology

This cluster describes a set of systemic pathological conditions related to the

theme of human understanding of complex systems. This theme is developed from

fourteen concepts of systems theory that suggest that the human capacity for understanding plays a major role in how one deals with complex systems. In terms of pathology, the theme of systemic understanding involves not taking into account and/or dismissing systems theory concepts that influence human understanding and divergence of human perspectives concerning complex systems. Table 48 shows attributes of systemic *understanding* pathology and its associated element pathologies.

Systemic Understanding Pathology		
Metasystem pathology attributes	Metasystem pathology dimensions	
Pathology of basins of stability	Reduction in system stability as attributed to inability to recognize different system configurations or their transition periods; assuming that each configuration uses the same resources and produces different consequences; difficulty in initiating a required move from one basin to the next; inability to direct the system – letting it to gravitate towards a least energy state	
Pathology of circular causality	Using a traditional (linear) causality model of thinking without recognizing the intricate interrelationships in a complex system; assuming it is not possible to have a wide range of conditions leading to the same result; focusing on cause rather that processes and patterns; assuming simple cause-effect relationships rather that mutual or multiple causality	
Pathology of complementarity	Ignoring alternative perspectives/models that are not entirely compatible with the established-predominate perspectives including missions, goals and objectives; assuming there is only one 'right' perspective; shunning different perspectives and the insights they contain; not making different perspectives explicit	
Pathology of darkness	Operating under the assumption that all relevant aspects, including behaviors, are known; striving to know all aspects of a system including elements as well as their interactions; focusing on crucial aspects of a system while avoiding irrelevant details	
Pathology of eudemony	Placing precedence on financial profitability above all other measures; lacking the right balance in material, technical, physical, social, nutritional, cognitive, spiritual, and environment aspect	
Pathology of holism	Operating under assumption that behaviors of an integrated system are possessed in parts of the system; assuming that understanding of a system can be maintained even past a particular point of reduction; system level behaviors can be deduced from behaviors of the parts	
Pathology of incompleteness	Operating under the assumption that the traditional terms of discourse/frame of reference of organization is both consistent and complete; assuming that the framework of reference considers all possible events including unforeseen ones; assuming all problems are solvable in current frame of reference	

Table 48: Attributes and Dimensions for Systemic Understanding Metasystem Pathology

Table 48 (cont.)

Pathology of	Distorting reality by confusing abstract ideas with concrete physical entities;
reification	confusing parameters of subjectivity and objectivity accorded to systems, their
	operation, or their representations
Pathology of	Assigning more responsibilities beyond what the human element of the system
requisite	can reasonably handle; going beyond seven plus/minus two elements for human
parsimony	processing and still expecting sound reasoning
Pathology of	Failing to differentiate between different missions/objectives of the system;
requite saliency	emphasizing the wrong elements, out of proportion to what they deserve; system
	members are creating more issues rather than solving them; not operating using
	a common knowledge base; creating unfocused dialog, unjustified decisions,
	and arbitrary design outcomes that are not understood or even actionable by a
	diverse workforce
Pathology of	Ignoring meaningfully related events because they are impossible to explain in
synchronicity	terms of cause-effect language; assuming that current methods and tools can
	discern all relationships in a complex system
Pathology of	Operating under the assumption that stability and viability of a system is only
transcendence	achievable within the confines of reality as defined by the objective realm of
	scientific/physical laws; the universe simply organizes itself in dimensions of
	physical space-time frame; human logic is powerful enough to understand all
	complexity; faith is neglected
Pathology of ultra-	Designing a system to fend off anticipated disturbances but not designed to fend
stability	against unknown disturbances; designing for both requires modifying one's
	view of stability and system structure
Pathology of	Attributing reality and knowledge only to directly observable results; involving
undifferentiated	traditional human sensors of sight, hearing, taste, smell and touch; inferring
coding	reality and developing knowledge from indirect communication is rejected

This section provided a detailed breakdown of the eight metapathologies supporting the metasystem pathology identification construct. A comprehensive description of each metapathology including individual attributes (i.e., related systems theory-based pathologies), detailed accounts of dimensions of pathologies, and relation to systems theory in terms of problem formulation was provided. The research results as presented in this section articulate systems conditions affecting system performance (i.e., pathologies), these conditions are described in terms of not adhering/violating systems theory concepts, and are rigorously grounded in concepts of systems theory. In the next section, a final key output, construct for metasystem pathology identification is developed to conclude theory development phase.

5.1.4 Theory: Metasystem Pathologies Identification (MPI) Construct

This section discusses the resulting construct from all the previous coding and categorizations. This is done to provide a response to Research Question One. The following development depicts the evolving nature of the construct grounded in the systems theory data to support systemic problem formulation.

The first concept that emerged from the Grounded Theory Method was that problems affecting systems exist independent of '*not knowing systems theory*.' A driving force behind the eight metasystem pathologies, supported by major categories, and certainly exhibited in the codes, is the notion that it is possible to know the concepts of systems theory. When one does not know a concept of systems theory, he or she may or may not adhere to it - totally independent of knowledge of the principle. However, not knowing a concept and its utility does not preclude a system from failing to achieve expected performance due to violation of the applicable system principle(s). Consequently, this *not knowing* places a complex system in a situation in which concepts of systems theory may not be fully utilized to enhance elements of systems that are critical to its development, growth, sustainability, and continued viability.

The second concept that emerged from grounded theory method is that *problems affecting systems involve 'violation of systems theory.* 'It is critical to acknowledge that one could know a concept of systems theory and its utility, yet still chooses to ignore it or misapply it. After all, it is possible for one to select 'reality' according to one's view (Dery, 1984) or embrace a particular perspective (Clemson, 1984). Additionally, there is

need to have the right balance in application of concepts of systems theory. Selecting an extreme application of a concept can have a significant effect on the system. Figure 36 represents these relationships in construction of pathologies.

Figure 36: A Model for Supporting Deviation from Systems Theory

This basic idea of either not knowing or violating systems theory is directly related to systems-based pathologies (discussed earlier in detail) and therefore related to metasystem pathologies (discussed earlier in detail as well). Thus, we have the ideas of: (1) not knowing and therefore not accounting for concepts of systems theory, (2) knowing, but engaging in poor execution of concepts of systems theory, or (3) blatantly ignoring concepts of systems theory. In the case of poor execution, it appears that one could choose certain aspects of systems theory while ignoring others (Dent, 2013). This

dimension, while not obvious from systems theory data, suggests that it is possible to partially apply concepts of systems theory with varying degrees of execution effectiveness. Collectively, the violation of systems theory (principles), regardless of the reason for the violation, places the system in a position whereby the resulting pathology is a prelude to diminished system performance. In bringing the research together under the guide of GTM, the result is a unique verbal qualitative model (theory) describing pathologies that result for violation of systems principles:

Metasystem pathologies derive from the violation of systems theoretic principles. This violation might stem from not knowing, poor execution, or blatant disregard, but irrespective of source, violations diminish the capacity for a system to meet performance expectations.

This metasystem pathologies identification construct is consistent with codes (Figure 32), categories (Figure 33 and Appendix B), category major groupings (Figure 34), and metapathologies (Figure 35). These figures encapsulate the outcome of grounded theory that creates an explicit link between systems theory and problem formulation and provide a granular list of systems theory-based pathologies affecting system performance. Figure 37 provides a graphical representation of this linkage.

Having inductively developed a construct explicitly linking systems theory to problem formulation, the researcher moved into the phase in which the outcome of the construct can be 'face' validated, demonstrating the ability to deploy the construct in an operational setting. The following section elaborates the case application of this construct.

5.2 MPI CONSTRUCT FACE VALIDATION

The grounded theory of metasystem pathologies identification is valid having been developed from adherence to the GTM. However, this does not mean that this theory cannot be improved. In fact, when appropriate, theories developed in grounded theory are often improved when they are empirically tested (Denzin & Lincoln, 1994; Glaser & Strauss, 1967; Leedy & Ormrod, 2010). In this research, the proposed grounded theory was advanced to a position where it could serve as a launching point for further development and the beginnings of 'theory testing' from deductive examinations. However, that testing is beyond the scope of the present investigation.

Nevertheless, research engaged in an examination of the application of the construct in an operational setting as depicted in Chapter IV. In pursuit of this aspect of research, this portion of the research sets out to provide a response to the second research question: *What results from the deployment of the developed metasystem pathologies identification construct in an operational setting?*

5.2.1 Input and Planning

In order to operationalize the theory put forth in the theory development phase; there was a need to simplify systems theory-based pathologies. Specifically, the pathologies, as listed in Appendix B, were synthetized to create a set of statements that could be deployed in an operational setting. This process was enhanced by input from eternal experts as indicated in Chapter IV. Too large to be included in this research, systems experts provided questions that captured the essence of pathologies and yet 'simple' enough to be understood by practitioners without expertise in systems theory. Appendix C illustrates a correspondent that was used to elicit input from experts. In all, 88 statements were developed from 83 systems theory-based pathologies. The number of statements for evaluation is higher than the number of pathologies since more than one statement was necessary in several cases, including the pathologies of *Dialecticism*, *Feedback, Recursiveness, Sub-optimization*, and *Viability*.

The operational setting for the application was focused on a common system of interest. Anonymity was preserved for all participants and the web-based survey was reviewed by the Institutional Review Board for administrative review. As indicated in Chapter IV, the participants were to evaluate the statements developed from pathologies along two dimensions: 1) the degree to which they agree/disagree that the statement as described exists in their organization (i.e., unit of analysis) and the degree of consequence associated with the specified pathology. The deployment took place at an organization that meets criteria described in Table 34 in Chapter IV. The unit of analysis that was evaluated for pathologies can be categorized as a government entity and is part of a large number of organizations that are under the Department of Defense.

5.2.2 Data Collection and Analysis

As indicated in Chapter IV, an on-line survey was designed tool was designed and anonymous administered through Qualtrics[©] software. In this section, a breakdown of

the survey results are presented. Table 49 presents an overall picture of numbers associated with the survey.

Categories of participants	Total numbers	Relevant notes
Number of people who responded	111	Initially, at least 9 participants were needed to get substantive results from the survey as indicated in Table 34. 111 participants is more than what the researcher anticipated, given the purpose of this section of the research, this indicates that the tool was well developed for the research
Results omitted	0	For some reason or another, the survey was not completed

 Table 49: Overall Numbers of the Survey Results

The raw data from the survey are presented in a 49 by 88 grid table in Appendix E. There are 49 grids corresponding to intersection of 'existence' and 'consequence' related to pathology statements as indicated in Figure 26 in Chapter IV. The table contains 88 columns corresponding to the 88 different survey statements for pathologies as indicated in Appendix D. A summary of the results from all 111 participants are presented in Appendix E. In the following sections, several representations are presented in reference to the data collected.

5.2.2.1 Regions of pathologies in the unit of analysis

For the current unit of analysis, Figure 38 presents a composite of percentage by the different regions. In accordance with the aim of this research, it appears possible to represent pathologies in terms of regions. It is also possible to focus on individual grids. In fact, we are able to determine that over 15% participants were 'Undecided' regarding the existence the systems theory-based pathologies and recognize that those pathologies can have 'Moderate' consequences on the operations of their organization (Figure 39).

Figure 38: Three Regions and Percentages of Composite Pathology Profile for the Unit of Analysis

Figure 39: Percentages of Composite by Grid for the Unit of Analysis

These composite views indicate all the pathologies as numbered 1 to 88. An individual view of each pathology provides an even clearer picture of pathologies. Specifically, Figure 40 is selected to indicate the number of participant and their perspective on the same pathology. In this case Statement: *(SYSTEM OF INTEREST)*

Pathology of Complementarity.

Figure 40: Different Perspective on the Pathology of Complementarity

5.2.2.2 Reflections for the case application

This section is developed to provide some insights related to ability to more theoretical inductive research on systems theory-based pathologies to an operational setting. Specifically, we focus on four elements as described in Section 4.2.3.4 as presented in Table 50, below.

Table 50: Reflections for the Case Application		
Ability to discover	The overall picture suggests that it is possible to use the	
pathologies	developed pathologies to address discover issues that could be	
	affecting system performance and thus impacting system	
	viability. The approach that was undertaken indicates that 20%	
	appear in a region that should be not of much concern. However,	
	this doesn't mean that those pathologies DO NOT exist.	
	Moreover, the SD-N grid might only represent what was found	
	for the specified unit of analysis. It does not mean that those	
	pathologies do not exists in other 'exist' and have 'consequences'	
	in other settings	
Assertions regarding	For this particular unit of analysis the following general	
pathologies for the	statements are drawn:	
unit of analysis	1. It's important to find out the cause of divergent of	
-	perspectives on pathologies (e.g., see Figure 40)	
	2. There appears to be a cluster around 'Undecided-	
	Moderate,' what pathologies underline this cluster and	
	what should be done	
Changes that could	The feedback received from the participant was positive in	
be made to improve	regards to the use of the tool. They especially liked the use of	
construct	regions and color as the researcher suggested areas that might	
	need to be discussed as part of problem formulation activities.	
	The researcher remained open to changes that could be made to	
	improve representations	
Implications and	The statements that are used in evaluations must be structured to	
suggestions for	enable participant to easily provide their responses. It also appears	
improving execution	that there is a need to have a pre-tool deployment where	
	participant discus the survey and perhaps have pilot test and a	
	post-tool deployment phase to clear up any issues that may have	
	arisen while participant took the survey. This enables the analysis	
	to develop a better pathology profile for the unit of analysis	

These reflections greatly enhance the concluding chapter. However, it can be said

that there is no evidence supporting that the theoretical research could not be transferred

into an operational setting.

5.3 CHAPTER SUMMARY

This chapter presented the results of qualitative research that was conducted based on the research designs described in Chapter IV. There are two major sections in this chapter. First, is the development of a problem formulation construct. Metasystem Pathologies Identification, which stems from the violation of systems theory. This construct was developed by adhering to tenets of grounded theory method and involved the development of 'codes' and 'categories' of pathologies from concepts of systems theory. A schema elaborating the interconnections among these categories was then developed, refined, and synthesized for coherent clusters based on shared characteristics in order to edge closer to a central idea of metasystem pathologies identification. A construct is then presented along with how it emerges from the violation of systems theory. Second, the emerging grounded theory (construct) is advanced to a position where it can serve as a launching point for further development. Specifically, a first generation case application of construct's pathologies is undertaken in an operational setting for 'face' validation and utility. The presented case application results indicate that the construct provides a viable means for enhancing problem formulation phase in systemsbased methodologies through its ability to identify and consequently articulate systemic issues affecting complex systems. The following concluding chapter, Chapter VI. provides conclusions, interpretations, and implications from this research.

CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS

Chapter V presented the results of the detailed research analysis that were performed using a multi-phase research design of grounded theory method and case study. This analysis produced a grounded metasystem pathologies identification construct and its derived pathologies as factors and issues affecting system performance. The preliminary case-study results that 'face' validated the constructs utility in an operational setting were also presented. This chapter discusses contributions of the research to systems body of knowledge and practice in the areas of systems theory and problem formulation. Following this discussion, the research implications for systems theory, systems related domains, practice, as well as theory are developed. Finally, future research directions are presented along the dimensions of philosophy, methodology, method, theory, axiomatic, axiological, and applications. Figure 41 illustrates a layout and flow of this concluding chapter.

Figure 41: Chapter VI Layout Diagram

6.1 RESEARCH CONCLUSIONS

In Chapter II of this research the importance of promoting holistic understanding of our world was expressed. It was suggested that systems thinking was essential to this call for holistic understanding since our world and its systems do not exist in isolation; they exist as interdependent complex systems and systems of systems. This chapter also noted that there is no shortage of robust systems-based methodologies that can be used to holistically and systemically understand behaviors of such systems and address the problems they spawn. The premise of such methodologies is to holistically understand complex systems and their behavior as articulated in systems theory. A key and common activity of such methodologies was identified as *problem formulation*. A gap in the systems body of knowledge associated with the problem formulation phase utilization of systems theory and lack of focus on metasystemic pathologies during problem formulation, was identified. This research was initiated to fill these gaps.

Recall that the purpose of this research was to use a Grounded Theory Method to develop a systems theory-based construct for metasystem pathologies identification in support of problem formulation phase of systems-based methodologies. The research was especially designed to provide responses to two research questions:

- 1. How can systems theory be used to generate a metasystem pathologies identification construct to support problem formulation phase of systemsbased methodologies?
- 2. What results from the deployment of the developed metasystem pathologies identification construct in an operational setting?

In concluding this research, it is necessary to consider whether the purpose of this research was met along with whether the research questions were answered. Simply stated, yes, the research fulfilled its purpose and provided responses to the questions as articulated in Chapter V. Specificity, concerning research purpose and questions, the following outcomes were archived:

- Development of a concept of systems theory-based pathology
- Identification of systems theory-based pathologies for problem formulation
- Delineation of dimensions of metasystem pathologies and their attributes
- Discovery of a metasystem pathologies identification construct
- Application and results of construct application

In addition, this research supported a research perspective on metasystem pathologies (see Table 50) that was introduced in Chapter II. The results as presented in Chapter V supported the basic concepts of metasystem pathologies. Table 51: Research Perspective for Metasystem Pathologies Identification Construct Includes circumstances, conditions, factors, patterns, or issues that acts to limit system

performance, or lessen system development, growth, and viability

Emerges out of inadequate use of systems theory (i.e., laws, principles, theorems) which involved not accounting for systems theory and/ blatant systems theory

Does not have one correct interpretation. Even when there is agreement on pathology existence, the interpretations concerning the source, meaning, etc. will not necessarily be congruent among observers. Therefore, the idea of pathology embraces systems theoretic principle of complementarity

Dependent on systems and observer perspective. Pathology cannot exist in absence of attribution from an observer

Includes factors internal and external, to the system, acting to limit system performance, or lessen system development, growth, and viability

Include organizational structures, policies, activities, or decisions that may hinder systems development, viability, or growth

Involves essential system functions. Essential system functions are necessary for system viability. Developing such functions and maintaining them involves holistic thinking which is based on systems theory. Consequently, violating systems theory affects essential functions of a system and metasystem

Involves system mechanisms that enable the system to perform the essential system functions. A system might lack mechanisms or might have mechanisms that are not effective in execution of the system/metasystem functions, creating a condition in which the expected level of performance is not met

Even though the research perspective on pathologies was developed from the

literature prior to the execution of the research; the results appear to be consistent with

the research paradigm and underpinnings that constitute systems holistic thinking.

However, and in a truly emerging fashion, the systems theory-based pathologies. their

groupings, and metapathologies as well their attributes/dimensions, emerged as research

evolved. The following discussion elaborates the outcomes of this research.

6.1.1 Significant Research Conclusions

This section elaborates the key overarching conclusions as presented above. It includes the key outcomes drawn from research with respect to research purpose,

research questions, and the research perspective on pathologies.

First, the pathology concept from Beer's (1984) Viable System Model of management cybernetics provided a spotlight into intersection of systems theory and problem formulation to articulate systems theory-based pathologies. It was determined that violating concepts of systems theory can have adverse effects on complex system performance. Using Grounded Theory Method, literature was collected and coded for definition of pathologies in complex systems as violations or shortcomings in meeting the tenets of systems theory. A significant number of codes emerged from systems theory data supporting creation of pathology categories, and provided a reformed definition of systems theory-based pathology, *the inadequate use of systems theory in problem formulation, expressed as either the lack of application, misapplication, or disregard of laws, principles, and theorems of systems theory.*

Second, continuing data collection and following procedures of grounded theory, the researcher applied, extracted, contrasted, and compared the emerging concept of systems theory-based pathologies to other concepts of systems theory. Systems significant statements, memos, and text were used to formulate meanings for pathologies resulting in emerging of 362 codes that were grouped to form an initial set of systems theory categories of circumstances, conditions, factors, or patterns that act to limit system performance. Further analysis using the Grounded Theory Method produced a total number of 83 categories from the initial codes. These categories comprise the systems theory-based pathologies that represent deep systemic issues, grounded in systems theory. which can affect system performance and can be examined during problem formulation.

Third, in this research, it was acknowledged that complex systems do not exist in isolation. Likewise, pathologies affecting such systems do not exist in isolation.

Following procedures of grounded theory, it was necessary to consider relationships among systems theory-based pathologies. The 83 systems theory-based pathologies were grouped into fifteen major groupings which then collapsed into eight metagroupings that appear to provide an umbrella covering the systems theory-based pathologies that emerged from the analysis. These pathologies included: 1) systemic dynamics, (2) system goals, (3) systemic information flow, (4) systemic process and activities, (5) systemic regulation, (6) systemic resources, (7) systemic structures, and (8) understanding of systems. A rigorous use of grounded theory activity of selective coding and software (OSR International NVivo 10) proved insightful in articulating these metasystem pathologies. Similar to a systems-theory pathology, a metasystem pathology acts to limit system performance. However, rather than treating pathologies as isolated, metasystem pathologies involve a set of related pathologies, forming a cluster of higher-level pathologies. These pathologies affect the likelihood of complex system such that achieving desired systems-wide performance is reduced. Each metasystem pathology contains a number of systems theory-based pathologies clustered around a common theme which is further clarified in the dimensions of each systems theory-based pathology. These dimensions identify the direct relationship between the pathology and the corresponding concepts of systems theory and problem formulation.

Fourth, a key feature of this research was to develop a general construct of metasystem pathologies that could be used in conjunction with problem formulation phases of any systems-based methodology. The construct as stated is simple and yet grounded in systems theory data. In addition, literature on systems theory support an assumption that in all likelihood human understanding of what constitutes systems theory is limited. The general nature of the construct as presented in this research renders it malleable to our continued and evolving understanding of concepts of systems theory in connection to problem formulation. New or revised concepts of systems theory can be used to generate pathologies that could be then be used to enhance problem formulation activities in support of systems-based methodologies.

A final observation of this research has to do with the application of the construct in an operational setting. A lot of work went into operationalizing the concepts underlying systems theory-based pathologies so as to be deployable in an operational setting. The one case study presented in Chapter V not only illustrates the ability to derive operational application of the theoretically formulated construct of the research, as such it provided a level of 'face' validation for the operational deployment of the theoretical construct of the pathologies. The organization in which assessment of pathologies took place is not presented as a special case. Granted that every system (i.e., organization) is unique in its own way, the perspectives of pathologies identified in this organization suggest that it's possible to apply the theory in other settings and through other application (tools) developments for the purposes of problem formulation.

In conclusion, this research forms the foundation for a richer inclusion of systems theory in problem formulation activities of systems-based methodologies such as systems engineering. The construct also adds to the systems body of knowledge by projecting another use of concepts of systems theory, outlining factors and issues that affect system performance, and proving a springboard for developing new technologies, methods, and tools that can support problem formulation. In line with these conclusions, the following section outlines the far reaching implications based in this research.

6.2 RESEARH IMPLICATIONS

The metasystem pathologies construct generated in this research and the results presented in Chapter V have several far reaching implications for theory, method, and practice. First, the research activities were undertaken to purposely and proactively engage in the creation of the systems theory-based knowledge that serve as a frame of reference for identifying systemic issues affecting complex system performance. Consideration of the systems theory-based pathologies might act to enhance understanding and create the possibility for alternative remedial design modifications for systems prior to operational fielding. For operating systems, examination might be aided for systems that might be experiencing the performance deficiencies stemming from the existence of one or more of systems theory-based pathologies. Whether dealing with a newly designed or operating system, a rigorous problem formulation that includes articulation of pathologies can be used to inform design, execution, and evolution of functions necessary for successful system governance.

For systems theory in general, the research provides clarity on a significant use of a systems theory, comprehensively, in connection to a key activity associated with complex systems. This key activity is *problem formulation* as established in systemsbased methodologies. Through grounded theory, this research puts forth a construct that can be used to identify systemic issues affecting system performance. Thus, attempting to increase the probability that an analyst will address true systemic issues affecting system performance. In effect, this supports avoidance of committing a Type III error of solving the wrong problem precisely (Kimball, 1957; Mitroff & Featheringham, 1974; Mitroff, 1998; Mosteller, 1948). Since the construct is grounded in systems theory, it can surface truly systemic issues that affect systems from the systems theory perspective. In addition, since problem formulation is an important phase of most systems-based approaches, it can be used in connection with any systems-related approaches where problem formulation is a necessary activity.

In many systems-related approaches such as systems analysis, systems engineering, operational research, systems dynamics, organizational cybernetics, strategic assumption surfacing and testing, interactive planning, soft systems methodology, systems of systems engineering methodology, critical systems heuristics, organizational learning, sociotechnical systems, and total systems intervention, *Metasystem Pathologies Identification (MP1)* has significant implications. MPI is structured to help the problem formulation phase of these methodologies by creating input stemming from systems theory-based pathologies that can be used to better place the emphasis of subsequent analysis in context. Ultimately, this supports more efficient and effective development of solutions to systemic issues. The proposed approach to better inform problem formulation supplements contemporary problem formulation methods and tools (e.g., needs analysis, Fishbone diagraming, SWOT analysis; requirements analysis, rich picture, etc.). This research stands to provide a different level of utility for problem formulation that will vary based on the domain system of interest and context of application.

In connection with contribution to systems-related domains, this research also has significant implications for practice. While not presented as a repeatable method for identifying pathologies, MPI and supporting systems theory-based pathologies provide working practitioners with basic knowledge that can enhance approaches to problem

250

formulation. This can complement tools already in practice. A practitioner concerned with problem formation can now include assessment of pathologies during problem formulation. Appendix E provides an example of how the MPI could be used in conjunction with problem formulation in SOSE Methodology. In addition, further research will move to deliver a repeatable method for identifying pathologies, provide substantive tools for ranking and prioritizing pathologies and, specific tools (metrics) to validate pathologies.

Associated with the case application is the development of a first rendition of a 'pathological profile' for the unit of analysis. This profile is based on two initial measures of degree of existence and consequences. As research evolves, other measures are expected to refine the profile to provide a more robust accounting of system pathologies. In relation to the pathologies profile, the researcher is not under illusion that the results of the case application or those that will follow, including the profiles, are generalizable (i.e., transportable) to other settings or systems. It is the expectation of the researcher that each system will have a different profile even though they share the same input measures. However, this does not negate the utility of having a general pathology profile that can be used for diagnostic accounting of pathological conditions existing in a system which can be discovered during problem formulation.

A final implication of the research has to do with the use of grounded theory in an area of research not typically associated with grounded theory as a research method. While grounded theory as a research method is widely used in qualitative social sciences, it is rarely used beyond this domain and has certainly not gained popularity in systems related fields as articulated in this research. Nonetheless, the method's interpretive nature

251

coincided well with the subjective nature of the research undertaken and contributed immensely to the development of the MPI construct and its systems theory-based pathologies. Thus, applying grounded theory in systems domain provided an opportunity for an enhanced capacity to conduct inductive research and could provide further insights into other research agendas for systems related domains. In line with these research implications, the following section discusses proposed future research.

6.3 FUTURE RESEARCH DIRECTIONS

Research into pathologies should not be confined to a privileged intellectual school of thought. However, the paradigm from which this research was undertaken is clearly articulated as 'subjective-inductive' in accordance with ontology, epistemology, methodology, and nature of humans. This begs the question, is the knowledge presented in this research of any value to the 'objective' based paradigms of knowledge and reality? Clearly, there is a need to further extend this research. In a truly systemic thinking fashion, both of these paradigms have historically established utility and each provide insights into complex phenomena. Neither paradigm is 'correct' and therefore should be considered not as mutually exclusive of one another, but rather complementary in forming a more holistic perspective of phenomena. Drawing on this understanding, the following research questions are also proposed to increase the maturity of the derived construct and the development of systems theory-based pathologies.

6.3.1 Research Pertaining to Philosophical Issues

At the most fundamental level, any rigorous research needs to establish a paradigm for contrasting knowledge claims. At one end of this spectrum, one can use the

252

traditional scientifically-based research paradigm in which the researcher "initially requires reduction; singling out a portion of reality ...set[s] a hypothesis about this portion of reality...design[s] an artificial situation where this small number of variables can be investigated while the remainder are held constant. Experimental design is important, with the experiment purposely devised to test the hypothesis with the aim of refutation. Knowledge accrues from this method" (Flood & Carson, 1993, p. 249). Conversely, a researcher might focus on the social science perspective, the interpretive or naturalistic paradigm, where deeper understanding of reality and meaning of phenomena are subjective rather than being based on hypothesis, cause and effects. In line with this thinking, the following future research questions are proposed as a potential guide to follow the present state of research from this effort:

- Is a single paradigm of philosophy sufficient to address all aspects of systems theory-based pathology? Or should a specific aspect of philosophy be adapted to address pathologies for problem formulation?
- Can the idea of systems theory-pathologies be empirically established? In addition, what are the dimensions and theory testing protocols that necessitates empirical examination?

6.3.2 Research Pertaining to Methodological Issues

In connection with philosophical paradigm (the subjective-inductive approach undertaken in this research), methodology deals with the means by which a researcher attempts to understand, investigate, and gain knowledge in the world. In this research, the focus was placed on developing a grounded theoretic construct for pathologies. However, there is a need to develop theoretically informed methodologies (i.e., frameworks) that can be used to provide high level guidance for deployment, analysis, and evolution of the construct in operational settings. In line with this thinking, the following questions are suggested:

- Given the MPI construct and its systems theory-based pathologies, what methodology can be developed to implement the construct to systemically analyze and evolve complex systems?
- How can such a methodology be tested and validated with regards to how they enable investigation and transformation of a complex system?

6.3.3 Research Pertaining to Epistemological Issues

Epistemology deals with how a researcher (i.e., a system observer) begins to understand problematic situations and communicate knowledge to fellow researchers or observers. In this research, supported by the scarcity of literature on concepts of pathology, an anti-positivistic view of knowledge that suggests understanding pathologies is based subjectivity of individual experiences was undertaken. By applying lessons learned from this research, a foundation for further general knowledge development has been established. In line with this thinking, the following questions are posed for consideration of further development:

- Given the developed systems theory-based pathologies, are there pathologies that appear to be unique to certain industries or system types?
- In practice, what pathologies appear to be closely related such that they can be clustered together?

6.3.4 Research Pertaining to Ontological Issues

Ontology deals with existence of entities and how such entities can be concretely understood by the external world. Regardless of whether reality is taken as external to the individual imposing itself on individual consciousness (i.e., realism) or as a product of individual consciousness (nominalism), the impact has to be real to the world. With respect to systems theory-based pathologies, the effects, be they conceptual or tangible, must be made explicit. In line with this thinking, the following research questions are suggested:

- How are the effects of systems theory-based pathologies manifested?
- What are the dominant dimensions of the effects of systems theory-based pathologies?

6.3.5 Research Pertaining to Theoretical Issues

Much of the current research was devoted towards development of a construct (theory) for metasystem pathology identification for the problem formulation phase of systems-based pathologies. Imposed on this research are ideas that emerged from 'codes' and 'categories' of systems theory that, at first, appear to have nothing to do with the identification of issues affecting performance and viability of complex systems. A theoretical discussion linking pathologies to performance was presented. However, there is a need to develop metrics that link systems theory-based pathologies to the effects on performance of complex systems. In line with this thinking, the following research questions are proposed:

What measures can be developed to explicitly link a systems theory-based pathology to performance of a complex system?

- How can the effects of a systems theory-based pathology be mitigated? Is it a matter of resources allocation, change in policy, education, etc.?
- 3.3.6 Research Pertaining to Axiomatic Issues

The development of self-evident truth is necessary for systems theory-based pathologies to be fully appreciated. A large responsibility is placed on the research community to evolve these ideas into self-evident truths. This might involve articulating a set of pathologies that appear to be common to all industries, concepts of systems theory that appear to be frequently violated, as well as seeking to refine our understanding of systems theory as applied in this research. In line with this thinking, the following research questions are proposed:

- What are the self-evident truths regarding systems theory-based pathologies that appear common in many settings?
- How can our view of systems theory be expanded to include concepts (i.e., laws, principles, and theorems) that can be used to evolve systems theorypathologies and its construct in relation to modern system problems?

6.3.7 Research Pertaining to Axiological Issues

Axiology deals with the nature of value and value judgments. As indicated in this research, people can have differing perspectives of the same phenomena. It could be argued that identifying and assessing pathologies implicitly brings value to the system owner. However, beyond this implicit value, it is evident that there is a need to explicitly articulate values associated with inclusion of pathologies in system development. Values and value judgments should become an important aspect of MPI. The issue of value

could be addressed by looking into why people might have different perspectives on the same pathology. In line with this thinking, the following research questions are proposed:

- Why might people have varying perspectives on pathologies in the same system?
- What does having differing/same perspectives on pathologies mean for a problem formulation activity?
- 6.3.8 Research Pertaining to Method

A method is a particular form of procedure for accomplishing or approaching something, systematically. This research provides a high level construct for pathologies based on systems theory. However, it does not offer a prescribed step-by-step method that can be used to identify pathologies in complex systems. This is not to criticize this research, or to cast doubt on construct utility in assisting to surface systemic issues affecting systems. On the contrary, this critique offers an opportunity to develop a repeatable method that can be used to systematically identify pathologies. In line with this thinking, the following research questions are proposed:

- What method(s) can be developed to systematically identify, assess, and respond to pathologies in complex systems?
- What tools, techniques, and processes can be developed and employed in connection with these methods to facilitate identification, assessment, and response to pathologies?

6.3.9 Research Pertaining to Applications

The emerging paradigm presented in this research involves explicit usage of systems theory in *problem formulation* to articulate factors and issues affecting complex

systems. There is not currently a vast array of applications that can be used as an exemplary case demonstrating application of these ideas. Applications of these theoretical ideas should be deployed in areas marked with ambiguity, complexity, interdependency, and uncertainty as is that case in numerous venues such as critical infrastructures (Gheorghe, 2006; Kröger & Zio, 2011; Rinaldi, Peerenboom, & Kelly, 2001; Thissen & Herder, 2003; Tolone et al., 2009). These venues are essential for maintaining and sustaining public wellbeing, security, and prosperity. Beyond the single case application presented in this research, multiple applications in different areas might provide a means to widen the boundary associated systems theory-based pathologies. In line with this thinking, the following research questions are proposed:

- What are the domains which are suitable for assessment of pathologies and with what results that might be expected to accrue?
- How has the pathology perspective of complex systems enhanced, for
 example, complex system governance (Keating, 2014; Keating et al., 2014)?

Additionally, it should be noted that while this research places emphasis on the level of existence of pathologies and their associated perceived consequences in case application, there is potential for expanded future research involving other measures. Traditional measures such as exposure, feasibility, fragility, resilience, risk, susceptibility, vulnerability, etc. could adapted for pathologies and aid in ranking and prioritizing pathologies or strategies to address pathologies for systemic development.

Finally, there is a good relationship between current research and Reason's (1990; 2000) research into human error and the focus on the nature of human cognition and mistakes. Specifically, Reason (1990) notes that human fallibility is inherently related to

failures of expertise – where humans might inappropriately apply solution and *lack of expertise* - they might lack an appropriate 'off-the-shelf' routine or solution (p. 12). Given current concepts of '*not knowing*, *knowing* – *poor execution*, and *knowing* – *blatant disregard*' for systems theory, there is need to ensure that people become component in systems theory and that they appropriately exposed to its different solutions to current vexing issues.

These possible areas of research can only serve to increase knowledge of the theoretic construct and its systems theory-based pathologies developed in this research.

6.4 CHAPTER SUMMARY

This chapter discussed research conclusions and recommendations. A summary of the main research findings is articulated with respect research purpose, objectives, and research questions. These significant research conclusions include the role of management cybernetics and the Grounded Theory Method in the inductive development of metasystem pathologies identification and its systems theory-based pathologies that can be used in conjunction with problem formulation phase of systems-based methodologies. Also, the ability to apply the emerging theoretically formulated construct in an operational setting was discussed. Next, the implications of the research were presented with regard to theory, systems body of knowledge, and practice of problem formulation. These included developing possible alternative remedial designs for complex systems, increasing the probability of solving the right problems, supplementing contemporary problem formulation methods and tools, and a platform to further the research beyond single case application. Also, implications were drawn with respect to the Grounded Theory Method since it has not gained popularity in systems-related domains. Finally, recommended future research was presented on philosophical, methodological, epistemology, ontology, theory, axiomatic, axiology, method, and application dimensions. Specific research questions were identified.

REFERENCES

- Abraham, L. (1936). A note on the fruitfulness of deduction. *Philosophy of Science*, 3(2), 152–155.
- Ackoff, R. L. (1971). Towards a system of systems concepts. *Management Science*, 17(11), 661–671. http://doi.org/10.1287/mnsc.17.11.661
- Ackoff, R. L. (1974). Redesigning the future: A systems approach to societal problems. New York, NY: John Wiley & Sons.
- Ackoff, R. L. (1977). Optimization + objectivity = optout. European Journal of Operational Research, 1(1), 1–7.
- Ackoff, R. L. (1978). The art of problem solving: Accompanied by Ackoff's fables. Philadelphia, PA: John Wiley & Sons, Inc.
- Ackoff, R. L. (1981a). Creating the corporate future. New York, NY: Wiley.
- Ackoff, R. L. (1981b). The art and science of mess management. *Interfaces*, 11(1), 20–26.
- Ackoff, R. L. (1999). *Re-creating the corporation*. New York. NY: Oxford University Press.
- Adams, K. G., & Meyers, T. J. (2011). Perspective 1 of the SoSE methodology: Framing the system under study. *International Journal of System of Systems Engineering*, 2(2/3), 163–192.
- Adams, K. M. (2011). Systems principles: Foundation for the SoSE methodology. International Journal of System of Systems Engineering, 2(2/3), 120–155.
- Adams, K. M. (2012). Systems theory: A formal construct for understanding systems. International Journal of System of Systems Engineering, 3(3/4), 209.
- Adams, K. M. (2012). Systems theory: A formal construct for understanding systems. International Journal of System of Systems Engineering, 3(3/4), 209–224.
- Adams, K. M., & Hester, P. T. (2012). Errors in systems approaches. International Journal of System of Systems Engineering, 3(3/4), 233–242. http://doi.org/10.1504/IJSSE.2012.052683
- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123. http://doi.org/10.1002/sys.21255
- Adams, K. M., & Keating, C. B. (2009). SoSE methodology rev 0.2 (No. NCSOSE Technical Report 009-2009). Norfolk, VA: National Centers for System of Systems Engineering.
- Adams, K. M., & Keating, C. B. (2011). Overview of the system of systems engineering methodology. *International Journal of System of Systems Engineering*, 2(2/3), 112– 119. http://doi.org/10.1504/IJSSE.2011.040549

- Adams, K. M., & Meyers, T. J. (2011). The US Navy carrier strike group as a system of systems. *International Journal of System of Systems Engineering*, 2(1/2), 91–97.
- Agarwal, R., & Tiwari, B. B. (2005). *Data communication and computer networks*. New Delhi: Vikas Publishing House Pvt Ltd.
- Aizermann, M. A. (1975). Fuzzy sets, fuzzy proofs and some unresolved problems in the theory of automata control. Presented at the Special Interest Discussion Session on Fuzzy Automata and Decision Processes, Boston, MA: 6th IFAC World Congress.
- Allan, G. (2003). A critique of using grounded theory as a research method. *Electronic* Journal of Business Research Methods, 2(1), 1–10.
- Angelo, L., Gudwin, R., & Queiroz, J. (Eds.). (2006). Artificial cognition systems. Hershey, PA: Idea Group Inc (IGI).
- Angier, N. (2007). *The canon: A whirligig tour of the beautiful basics of science*. New York, NY: Houghton Mifflin Company.
- Argyris, C. (1985). Strategy, change, and defensive routines. Boston, MA: Pitman.
- Argyris, C., & Schön, D. (1978). Organizational learning: A theory of action perspective. Reading, MA: Addison-Wesley.
- Argyris, C., & Schön, D. (1996). Organizational learning II: Theory, method, and practice. New York, NY: Addison-Wesley.
- Aristotle. (2002). *Metaphysics: Book H Form and being at work*. (J. Sachs, Trans.) (2nd ed.). Santa Fe, CA: Green Lion Press.
- Ashby, W. R. (1947). Principles of the self-organizing dynamic system. *The Journal of General Psychology*, 37(2), 125–128. http://doi.org/10.1080/00221309.1947.9918144
- Ashby, W. R. (1956). An introduction to cybernetics. London, UK: Chapman & Hall. Retrieved from http://pcp.vub.ac.be/books/IntroCyb.pdf
- Ashby, W. R. (1960). *Design for a brain: The origin of adaptive behaviour*. New York, NY: John Wiley & Sons Inc.
- Ashby, W. R. (1962). Principles of the self-organizing system. In H. von Foerster & G. Zopf (Eds.), *Principles of Self-Organization* (pp. 255–278). New York, NY: Pergamon Press.
- Atthill, C. (1975). *Decisions: West oil distribution*. London, UK: P.B. Educational Services.
- Auerbach, C. F., & Silverstein, L. B. (2003). *Qualitative data: An introduction to coding* and analysis. New York, NY: New York University Press.
- Aulin, A. (1982). The cybernetic laws of social progress: Toward a critical social philosophy of Marxism. New York, NY: Pergamon Press.
- Aulin-Ahmavaara, A. Y. (1979). The law of requisite hierarchy. *Kybernetes*, 8(4), 259–266. http://doi.org/10.1108/eb005528

- Baker, S. E., & Edwards, R. (2012). How many qualitative interviews is enough (NCRM Review Paper) (pp. 1–42). NCRM. Retrieved from http://eprints.ncrm.ac.uk/2273/
- Bale, L. S. (1995). Gregory Bateson, cybernetics, and the social/behavioral sciences. *Cybernetics and Human Knowing*, 3(1), 27–45.
- Bandalos, D. L., & Enders, C. K. (1996). The effects of nonnormality and number of response categories on reliability. *Applied Measurement in Education*, 9(2), 151– 160.
- Barnard, C. I. (1946). Functions and pathology of status systems in formal organizations. In W. F. Whyte (Ed.), *Industry and Society* (pp. 46–83). New York, NY: McGraw-Hill.
- Barot, V., Henson, S., Henshaw, M., Siemieniuch, C., Sinclair, M., Lim, S.-L., ...
 DeLaurentis, D. (2012). *Trans-atlantic research and education agenda in systems* of systems (*T-AREA-SoS*) (No. TAREA-PU-WP2-R-LU-9) (p. 141). Leicestershire, UK: Loughborough University. Retrieved from https://www.tareasos.eu/docs/pb/T-AREA-SoS FINAL SOAReport_V2.0.pdf
- Bateson, G. (1972). Steps to an ecology of mind. New York, NY: Jason Aronson Inc.
- Bateson, G. (1980). Steps to an ecology of mind. New York, NY: Bantam Books.
- Becker, H. S. (Ed.). (1966). Social problems: A modern approach. New York, NY: Wiley.
- Becvar, D. S., & Becvar, R. J. (1999). Systems theory and family therapy: A primer (2nd ed.). Lanham, MD: University Press of America.
- Bednarz, J. (1988). Autopoiesis: The organizational closure of social systems. Systems Research, 5(1), 57-64. http://doi.org/10.1002/sres.3850050107
- Beer, S. (1978). Platform for change. Chichester, UK: John Wiley.
- Beer, S. (1979). The heart of the enterprise. New York, NY: John Wiley & Sons.
- Beer, S. (1981). Brain of the firm: The managerial cybernetics of organization. Chichester, UK: Wiley.
- Beer, S. (1984). The viable system model: Its provenance, development, methodology and pathology. *The Journal of the Operational Research Society*, *35*(1), 7–25. http://doi.org/10.2307/2581927
- Beer, S. (1985). *Diagnosing the system for organizations*. Oxford, UK: Oxford University Press.
- Benoliel, J. Q. (1996). Grounded theory and nursing knowledge. *Qualitative Health Research*, 6(3), 406–428. http://doi.org/10.1177/104973239600600308
- Bergvall-Kareborn, B. (2002). Enriching the model-building phase of soft systems methodology. *Systems Research and Behavioral Science*, 19(1), 27–49.
- Birks, M., & Mills, J. (2011). *Grounded theory: A practical guide*. Thousand Oaks, CA: SAGE Publications Ltd.

- Blanchard, B. S., & Fabrycky, W. J. (2006). *Systems engineering and analysis* (4th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
- Bobba, J., Moore, K. E., Volos, H., Yen, L., Hill, M. D., Swift, M. M., & Wood, D. A. (2007). Performance pathologies in hardware transactional memory. In *Proceedings of the 34th Annual International Symposium on Computer Architecture* (pp. 81–91). San Diego: CA: ACM. http://doi.org/http://dx.doi.org/10.1145/1250662.1250674
- Boeije, H. (2010). Analysis in qualitative research. London, UK: Sage.
- Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. *Nature*, *121*(3050), 580–590.
- Boje, D. M. (2008). *Storytelling organizations*. Thousand Oaks, CA: SAGE Publications Ltd.
- Boulding, K. E. (1966). *The impact of social sciences*. New Brunswick, NJ: Rutgers University Press.
- Bowen, K. (1998). Some thoughts on multimethodology. Systemic Practice and Action Research, 11(2), 169–177.
- Bowler, D. (1981). General systems thinking. New York, NY: North Holland.
- Boyatzis, R. E. (1998). *Transforming qualitative information: Thematic analysis and code development*. Thousand Oaks, CA: Sage.
- Bradley, J. M. (2014). Systems theory based framework for competency models (Ph.D.). Old Dominion University, Norfolk, VA.
- Brewer, G. D. (1975). An analyst's view of the uses and abuses of modeling for decisionmaking (No. P-5395) (p. 35). Santa Monica, CA: RAND. Retrieved from http://www.rand.org/pubs/papers/P5395.html
- Bryant, A. (2002). Re-grounding grounded theory. *Journal of Information Technology Theory and Application*, 4(1), 25–42.
- Buckley, W. (1967). Sociology and modern systems theory. Englewood Cliffs, NJ: Prentice-Hall.
- Bunge, M. (1974). *Treatise on basic philosophy: Volume I*. Dordrecht, The Netherlands: D. Reidel Publishing Co.
- Butler-Kisber, L. (2010). Qualitative inquiry: Thematic, narrative, and arts-informed perspectives. London, UK: Sage.
- Bynum, W. F., & Porter, R. (1997). Companion encyclopedia of the history of medicine. New York, NY: Routledge.
- Calida, B. Y. (2013). System governance analysis of complex systems (Ph.D.). Old Dominion University, Norfolk, VA.
- Calida, B. Y., & Katina, P. F. (2012). Regional industries as critical infrastructures: a tale of two modern cities. *International Journal of Critical Infrastructures*, 8(1), 74–90. http://doi.org/10.1504/IJCIS.2012.046555

- Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraula, G., & Bonabeau, E. (2003). Self-organization in biological systems. Princeton, N.J: Princeton University Press.
- Cannon, W. B. (1929). Organization for physiological homeostasis. *Physiological Reviews*, 9(3), 399–431.
- Cannon, W. B. (1932). The wisdom of the body. New York, NY: Norton.
- Capra, F. (1982). *The turning point: Science, society, and the rising culture*. New York, NY: Simon and Schuster.
- Capra, F. (1997). The web of life: A new scientific understanding of living systems. New York, NY: Anchor Books.
- Casti, J. (2012). X-Events: Complexity overload and the collapse of everything. New York, NY: William Morrow.
- Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. Thousand Oaks, CA: Sage Publications.
- Checkland, P. B. (1978). The origins and nature of "hard" systems thinking. Journal of Applied Systems Analysis, 5(2), 99–110.
- Checkland, P. B. (1985). Formulating problems for systems analysis. In H. S. Miser & E.
 S. Quade (Eds.), *Handbook of systems analysis: Overview of uses, procedures, applications, and practice* (pp. 152–170). New York, NY: Elsevier Science Publishing Co., Inc.
- Checkland, P. B. (1990). Soft systems methodology: A thirty year retrospective. In P. B. Checkland & J. Scholes (Eds.), *Soft Systems Methodology in Action* (pp. A1–A66). Chichester, UK: John Wiley & Sons Ltd.
- Checkland, P. B. (1993). Systems thinking, systems practice. New York, NY: John Wiley & Sons.
- Checkland, P. B. (1999). Systems thinking, systems practice (2nd ed.). New York, NY: John Wiley & Sons.
- Checkland, P. B., & Poulter, J. (2006). Learning for action: a short definitive account of soft systems methodology and its use for practitioner, teachers, and students. Chichester, UK: Wiley.
- Checkland, P. B., & Scholes, J. (1990). Soft systems methodology in action. Chichester, UK: John Wiley & Sons Ltd.
- Checkland, P., & Scholes, J. (1999). Soft systems methodology in action. Chichester, UK: Wiley.
- Cherns, A. (1976). The principles of sociotechnical design. *Human Relations*, 29(8), 783-792. http://doi.org/10.1177/001872677602900806
- Cherns, A. (1987). Principles of sociotechnical design revisited. *Human Relations*, 40(3), 153–161.

- Chirkov, V. I., Ryan, R., & Sheldon, K. M. (Eds.). (2011). Human autonomy in crosscultural context: Perspectives on the psychology of agency, freedom, and wellbeing. New York, NY: Springer.
- Churchman, C. W. (1968). Challenge to reason. New York, NY: McGraw-Hill.
- Churchman, C. W. (1971). *The design of inquiring systems*. New York, NY: Basic Books.
- Churchman, C. W., Ackoff, R. L., & Arnoff, E. . (1957). Introduction to operations research. New York, NY: Wiley.
- Cilliers, P. (1998). Complexity and postmodernism: Understand complex systems. New York, NY: Routledge.
- Clegg, C. W. (2000). Sociotechnical principles for system design. *Applied Ergonomics*, 31(5), 463–477.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent, UK: Abacus Press.
- Comrey, A. L. (1988). Factor-analytic methods of scale development in personality and clinical psychology. *Journal of Consulting and Clinical Psychology*, *56*(5), 754–761.
- Conant, R., & Ashby, W. R. (1970). Every good regular of a system must be a model of that system. *International Journal of Systems Sciences*, 1(2), 89–97.
- Conrad, T. P., & Gheorghe, A. V. (2011). Editorial. International Journal of System of Systems Engineering, 2(2/3), 89-90.
- Corbin, J. M., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3 ed.). Thousand Oaks, CA: Sage.
- Cornock, S. (1977). Understanding supra-institutional problems: Systems lessons drawn from an application of the Checkland methodology. In G. J. Klir (Ed.), *Applied general systems research: Recent development and trends* (pp. 735–745). New York, NY: Plenum Press.
- Coveney, P., & Highfield, R. (1996). Frontiers of complexity: The search for order in a chaotic world. New York, NY: Ballantine Books.
- Creswell, J. W. (2009). Research design : Qualitative, quantitative, and mixed methods approaches (3rd ed.). Thousand Oaks, CA: Sage Publications.
- Crownover, M. W. B. (2005). Complex system contextual framework (CSCF): A grounded-theory construction for the articulation of system context in addressing complex systems problems (Ph.D.). Old Dominion University, Norfolk, VA.
- Cummings, T. G., & Worley, C. G. (2005). *Organization development and change* (8th ed.). Mason, OH: Cengage Learning.
- D'Alembert, J. (1743). *Traité de dynamique*. Paris, France: David l'Ainé. Retrieved from https://archive.org/details/traitdedynamiqu00dalgoog

- Damer, T. E. (2000). Attacking faulty reasoning: A practical guide to fallacy-free arguments (4th ed.). Belmont, CA: Wadsworth Publishing.
- Day, R. D. (2014). Introduction to family processes (5th ed.). New York, NY: Routledge.
- DeLaurentis, D. (2005). Understanding transportation as a system-of-systems design problem. In 43rd AIAA Aerospace Sciences Meeting. Reno, NV: American Institute of Aeronautics and Astronautics. Retrieved from http://arc.aiaa.org/doi/pdfplus/10.2514/6.2005-123
- DeLaurentis, D. A., Sindiy, O. V., & Stein, W. B. (2006). Developing sustainable space exploration via a system-of-systems approach. In *The American Institute of Aeronautics and Astronautics*. San Jose, CA. Retrieved from http://arc.aiaa.org/doi/pdfplus/10.2514/6.2006-7248
- DeLaurentis, D., & Callaway, R. K. (2004). A system-of-systems perspective for public policy decisions. *Review of Policy Research*, 21(6), 829–837.
- Dent, E. B. (2013). System science traditions: Differing philosophical assumptions (SSRN Scholarly Paper No. ID 2326323). Rochester, NY: Social Science Research Network. Retrieved from http://papers.ssrn.com/abstract=2326323
- Denzin, N. K. (1994). The art and politics of interpretation. In N. K. Denzin & Y. S. Lincoln (Eds.), *Handbook of qualitative research* (pp. 500–515). Thousand Oaks, CA: Sage.
- Denzin, N. K., & Lincoln, Y. S. (Eds.). (1994). *Handbook of qualitative research* (2nd ed.). Thousand Oaks, CA: Sage.
- Denzin, N. K., & Lincoln, Y. S. (2000). Introduction: The discipline and practice of qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), *Handbook of* qualitative research (2nd ed., pp. 1–19). Thousand Oaks, CA: Sage.
- Dery, D. (1984). *Problem definition in policy analysis*. Lawrence, KS: University Press of Kansas.
- DeSantis, L., & Ugarriza, D. N. (2000). The concept of theme as used in qualitative nursing research. *Western Journal of Nursing Research*, 22(3), 351–372.
- Dey, I. (1999). Grounding grounded theory: Guidelines for qualitative inquiry. San Diego, CA: Academic Press.
- Dietel, M., & Schäfer, R. (2008). Systems pathology: Or how to solve the complex problem of predictive pathology. *Virchows Archive*, 453(4), 309–312. http://doi.org/10.1007/s00428-008-0656-z
- Digby, J. (1989). Operations research and systems analysis at RAND, 1948-1967 (No. RAND/N-2936-RC) (p. 4). Santa Monica, CA: RAND.
- Djavanshir, G. R., Khorramshahgol, R., & Novitzki, J. (2009). Critical characteristics of metasystems: Toward defining metasystems' governance mechanism. *IT Professional*, 11(3), 46–49. http://doi.org/10.1109/MITP.2009.45
- Djavanshir, R., Alavizadeh, A., & Tarokh, M. J. (2012). From system-of-systems to meta-systems: Ambiguities and challenges. In A. V. Gheorghe (Ed.), *System of*

Systems. Rijeka, Croatia: InTech. Retrieved from http://www.intechopen.com/books/system-of-systems/from-system-of-systems-tometa-systems-ambiguities-and-challenges

- Douglas, D. (2003). Grounded theories of management: A methodological review. *Management Research News*, 26(5), 44–52. http://doi.org/10.1108/01409170310783466
- Douglas, M., & Wildavsky, A. (1982). Risk and culture: An essay on the selection of technical and environmental dangers. Berkeley, CA: University of California Press.
- Duffy, F. M. (2004). Moving upward together: Creating strategic alignment to sustain systemic school improvement. Lanham, MD: R&L Education.
- Edhlund, B., & Mcdougall, A. (2013). *Nvivo 10 Essentials [computer software]*. Stallarholmen, Sweden: Form and Kunskap.
- Egan, T. M. (2002). Grounded theory research and theory building. *Advances in Developing Human Resources*, 4(3), 277–295. http://doi.org/10.1177/1523422302043004
- Eisenhardt, K. M. (1989). Building theories from case study research. *The Academy of* Management Review, 14(4), 532-550. http://doi.org/10.2307/258557
- Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), *Models in Paleobiology* (pp. 82–115). San Francisco, CA: Freeman Cooper.
- Encyclopedia Britannica. (2013). Diminishing returns. Retrieved February 21, 2015, from http://www.britannica.com/EBchecked/topic/163723/diminishing-returns
- Eraut, M. (2009). *How professionals learn through work* (Daft 1/22/04/08). Surrey: Surrey Centre for Excellence in Professional Training and Education. Retrieved from http://learningtobeprofessional.pbworks.com/f/CHAPTER+A2+MICHAEL+ERAU T.pdf
- Espejo, R., & Harnden, R. (1989). Viable System Model: Interpretations and applications of Stafford Beer's VSM. New York, NY: Wiley & Sons, Inc.
- Espejo, R., & Reyes, A. (2011). Organizational systems: Managing complexity with the viable system model. Heidelberg, Germany: Springer Berlin / Heidelberg.
- Eusgeld, I., Nan, C., & Dietz, S. (2011). "System-of-systems" approach for interdependent critical infrastructures. *Reliability Engineering & System Safety*, 96(6), 679–686. http://doi.org/10.1016/j.ress.2010.12.010
- Fairhurst, G. T., & Sarr, R. A. (1996). The art of framing: Managing the language of leadership. San Francisco, CA: Jossey-Bass.
- Farr, J., & Buede, D. (2003). Systems engineering and engineering management: Keys to the efficient development of products and services. *Engineering Management Journal*, 15(3), 3–11.

- Feibleman, J. K. (1954). On the theory of induction. *Philosophy and Phenomenological Research*, 14(3), 332–342.
- Ferrero, G. (1894). L'inertie mentale et la loi du moindre effort. *Revue Philosophique de La France et de l'Étranger, T. 37*, 169–182.
- Feynman, R. P., Leighton, R. B., & Sands, M. (1963). *The Feynman lectures on physics: Mainly mechanics, radiation and heat.* Reading, MA: Addison-Wesley Press.
- Fiol, C. M., & Lyles, M. A. (1985). Organizational learning. The Academy of Management Review, 10(4), 803–813. http://doi.org/10.2307/258048
- Flood, R. L. (1995). Total systems intervention (TSI): A reconstitution. *Journal of the Operational Research Society*, *46*(2), 174–191.
- Flood, R. L., & Carson, E. R. (1993). *Dealing with complexity: An introduction to the theory and application of systems science*. New York, NY: Plenum Press.
- Flood, R. L., & Jackson, M. C. (1991). Creative problem solving: Total systems intervention. New York, NY: Wiley.
- Forrester, J. W. (1961). *Industrial dynamics*. Cambridge, MA: MIT press Cambridge, MA.
- Forrester, J. W. (1994). System dynamics, systems thinking and soft OR. System Dynamic Review, 10(2), 245–256.
- Forsberg, K., & Mooz, H. (1999). System engineering for faster, cheaper, better. In 1999 Ninth Annual International Symposium (INCOSE). Brighton, England. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.1716
- François, C. O. (2002). History and philosophy of the systems sciences: The road toward uncertainty. In F. Parra-Luna (Ed.), *Systems science and cybernetics. Vol. I* (pp. 81–111). Oxford, UK: EOLSS Publishers Co. Ltd. Retrieved from http://www.eolss.net/sample-chapters/c02/E6-46-01-01.pdf
- François, C. O. (Ed.). (2004). International Encyclopedia of Systems and Cybernetics. München, Germany: Walter de Gruyter.
- Frankfort-Nachmias, C., & Nachmias, D. (1992). Research methods in social sciences (4th ed., Vol. 1). New York, NY: St. Martin's Press.
- Gaines, B. R. (1977). Progress in general systems research. In G. J. Klir (Ed.), *Applied general systems research: Recent development and trends* (pp. 3–28). New York, NY: Plenum Press.
- Gay, L. R., & Airasian, P. W. (2002). Educational research: Competencies for analysis and applications (7th ed.). New Jersey, NJ: Prentice Hall.
- Geels, F. W. (2007). Feelings of discontent and the promise of middle range theory for STS examples from technology dynamics. *Science, Technology & Human Values, 32*(6), 627–651. http://doi.org/10.1177/0162243907303597
- Gharajedaghi, J. (1999). Systems thinking: Managing chaos and complexity: A platform for designing business architecture. Waltham, MA: Butterworth-Heinemann.

- Gheorghe, A. V. (2006). Critical infrastructures at risk: Securing the European electric power system (Vol. 9). Dordrecht, The Netherlands: Springer.
- Gheorghe, A. V., & Katina, P. F. (2014). Editorial: Resiliency and engineering systems -Research trends and challenges. *International Journal of Critical Infrastructures*, 10(3/4), 193–199.
- Gibson, J. E., Scherer, W. T., & Gibson, W. F. (2007). *How to do systems analysis*. Hoboken, NJ: Wiley-Interscience.
- Gilliland, M. W. (Ed.). (1978). *Energy analysis: A new public policy tool*. Boulder, CO: Westview Press for the American Association for the Advancement of Science.
- Gioia, D. A., & Pitre, E. (1990). Multiparadigm perspectives on theory building. *The* Academy of Management Review, 15(4), 584–602. http://doi.org/10.2307/258683
- Glaser, B. G. (1965). The constant comparative method of qualitative analysis. *Social Problems*, *12*(4), 436–445. http://doi.org/10.2307/798843
- Glaser, B. G. (1978). Theoretical sensitivity: Advances in methodology of grounded theory. Mill Valley, CA: Sociology Press.
- Glaser, B. G. (1992). Basics of grounded theory analysis: Emergence vs. forcing. Mill Valley, CA: Sociology Press.
- Glaser, B. G. (1999). The future of grounded theory. *Qualitative Health Research*, 9(6), 836–845. http://doi.org/10.1177/104973299129122199
- Glaser, B. G. (2005). *The grounded theory perspective III: Theoretical coding*. Mill Valley, CA: Sociology Press.
- Glaser, B. G., & Strauss, A. L. (1967). *The discovery of grounded theory: Strategies for qualitative research*. New York, NY: Aldine de Gruyter.
- Gödel, K. (1962). On formally undecidable propositions. New York, NY: Basic Books.
- Golafshani, N. (2003). Understanding reliability and validity in qualitative research. *The Qualitative Report*, 8(4), 597–607.
- Goulding, C. (1998). Grounded theory: The missing methodology on the interpretivist agenda. *Qualitative Market Research: An International Journal*, 1(1), 50–57. http://doi.org/10.1108/13522759810197587
- Goulding, C. (1999). Grounded Theory: Some reflections on paradigm. procedures and misconceptions (Working Paper No. Working Paper Series: WP006/99).
 Wolverhampton: UK: University of Wolverhampton.
- Gould, S. J. (1982). Darwinism and the expansion of evolutionary theory. *Science*, 216(4544), 380–387. http://doi.org/10.1126/science.7041256
- Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. *Paleobiology*, 3(2), 115–151.
- Gould, S. J., & Eldredge, N. (1986). Punctuated equilibrium at the third stage. Systematic Zoology, 35(1), 143–148. http://doi.org/10.2307/2413300
- Guba, E. G. (1981). ERIC/ECTJ annual review paper: Criteria for assessing the trustworthiness of naturalistic inquiries. *Educational Communication and Technology Journal*, 29(2), 75–91. http://doi.org/10.1007/BF02766777
- Guba, E. G. (Ed.). (1990). *The paradigm dialog*. Newbury Park, CA: Sage Publications, Inc.
- Guckenheimer, J., & Ottino, J. M. (2008). Foundations for complex systems research in the physical sciences and engineering (p. 21). Evanston, IL: Northwestern University: National Science Foundation. Retrieved from http://www.math.cornell.edu/~gucken/PDF/nsf_complex_systems.pdf
- Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An experiment with data saturation and variability. *Field Methods*, *18*(1), 59–82. http://doi.org/10.1177/1525822X05279903
- Hall, C. A. S. (Ed.). (1995). *Maximum power: The ideas and applications of H.T. Odum*. Niwot, CO: University Press of Colorado.
- Hall, C. A. S. (2004). The continuing importance of maximum power. *Ecological Modelling*, 178(1–2), 107–113. http://doi.org/10.1016/j.ecolmodel.2004.03.003
- Hammond, D. (2002). Exploring the genealogy of systems thinking. Systems Research and Behavioral Science, 19(5), 429–439. http://doi.org/10.1002/sres.499
- Heath, H., & Cowley, S. (2004). Developing a grounded theory approach: A comparison of Glaser and Strauss. *International Journal of Nursing Studies*, *41*(2), 141–150. http://doi.org/10.1016/S0020-7489(03)00113-5
- Hester, P. T. (2012). Why optimisation of a system of systems is both unattainable and unnecessary. *International Journal of System of Systems Systems of systems Engineering*, 3(3/4), 268–276. http://doi.org/10.1504/IJSSE.2012.052691
- Hester, P. T., & Adams, K. M. (2014). Systemic thinking: Fundamentals for understanding problems and messes. New York, NY: Springer Berlin Heidelberg.
- Heylighen, F. (1989). Self-organization, emergence and the architecture of complexity. In Proc. 1st European Conf. on System Science (AFCET) (pp. 23–32). Paris, France. Retrieved from http://cleamc11.vub.ac.be/papers/SelfArchCom.pdf
- Heylighen, F. (1992). Principles of systems and cybernetics: An evolutionary perspective.
 In R. Trappl (Ed.), *Cybernetics and Systems* (pp. 3–10). Singapore: World
 Scientific. Retrieved from http://pespmc1.vub.ac.be/papers/PrinciplesCybSys.pdf
- Heylighen, F., & Joslyn, C. (1992). What is systems theory? F. Heylighen, C. Joslyn, & V. Turchin (Eds.), *Cambridge Dictionary of Philosophy*. Brussels, Belgium: Principia Cybernetica Web. Retrieved from http://pespmc1.vub.ac.be/SYSTHEOR.html
- Hieronymi, A. (2013). Understanding systems science: A visual and integrative approach. *Systems Research and Behavioral Science*, 30(5), 580–595. http://doi.org/10.1002/sres.2215

- Hitch, C. (1953). Sub-optimization in operations problems. *Operations Research*, 1(3), 87–99. http://doi.org/10.1287/opre.1.3.87
- Hitch, C. (1957). Operations research and national planning A dissent. *Operations Research*, 5(5), 718–723.
- Hitchins, D. K. (1992). Putting systems to work. New York, NY: John Wiley.
- Hitchins, D. K. (2003). Advanced systems: Thinking, engineering, and management. Norwood: NJ: Artech House Publishers.
- Holling, C. S. (1973). Resilience and stability of ecological systems. *Annual Review of Ecology and Systematics*, 4(1), 1–23.
- Holling, C. S. (1996). Engineering resilience versus ecological resilience. In P. Schulze (Ed.), *Engineering within ecological constraints* (pp. 31–43). Washington, DC: National Academies Press.
- Iberal, A. (1972). *Towards a general science of viable systems*. New York, NY: McGraw-Hill.
- INCOSE. (2011). Systems engineering handbook: A guide for system life cycle processes and activities. (H. Cecilia, Ed.) (3.2 ed.). San Diego, CA: INCOSE.
- Jackson, M. C. (1991). Systems methodology for the management sciences. New York, NY: Plenum Press.
- Jackson, M. C. (2000). Systems approaches to management. New Jersey, NY: Springer.
- Jackson, M. C. (2003). Systems thinking: Creative holism for managers. Chichester, UK: John Wiley & Sons Ltd.
- Jackson, M. C., & Keys, P. (1984). Towards a system of systems methodologies. The Journal of the Operational Research Society, 35(6), 473–486. http://doi.org/10.2307/2581795
- Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. *Educational Researcher*, *33*(7), 14–26. http://doi.org/10.3102/0013189X033007014
- Jordan, N. (1963). Allocation of functions between man and machines in automated systems. *Journal of Applied Psychology*, 47(3), 161–165. http://doi.org/10.1037/h0043729
- Joslyn, C., & Rocha, L. M. (2000). Towards semiotic agent-based models of sociotechnical organizations. In Proc. AI, Simulation and Planning in High Autonomy Systems (AIS 2000) Conference (pp. 70–79). Tucson, AZ. Retrieved from http://informatics.indiana.edu/rocha/ps/AIS00.pdf
- Jung, C. (1960). The structure and dynamics of the psyche. In *Collected Works of C.G. Jung* (Vol. 8, pp. 417–519). Princeton, NJ: Princeton University Press.
- Jung, C. (1973). *Synchronicity: An acausal connecting principle* (Bollingen paperback edition). Princeton, NJ: Princeton University Press.

- Kant, I. (1991). *The metaphysics of morals*. (M. J. Gregor, Trans.). Cambridge, UK: Cambridge University Press.
- Kast, F. E., & Rosenzweig, J. E. (1972). General system theory: Applications for organization and management. Academy of Management Journal, 15(4), 447–465. http://doi.org/10.2307/255141
- Katina, P. F. (2015a). Emerging systems theory-based pathologies for governance of complex systems. *International Journal of System of Systems Engineering*, 6(1/2), 144–159. http://doi.org/10.1504/IJSSE.2015.068806
- Katina, P. F. (2015b). Systems theory as a foundation for discovery of pathologies for complex system problem formulation. In A. J. Masys (Ed.), From problem framing to problem solving: Applications of systems thinking and soft operations research in managing complexity (In Press). Geneva, Switzerland: Geneva, Switzerland: Springer International Publishing.
- Katina, P. F., & Hester, P. T. (2013). Systemic determination of infrastructure criticality. *International Journal of Critical Infrastructures*, 9(3), 211–225. http://doi.org/10.1504/IJCIS.2013.054980
- Katina, P. F., Keating, C. B., & Jaradat, R. M. (2014a). System requirements engineering in complex situations. *Requirements Engineering*, 19(1), 45–62. http://doi.org/10.1007/s00766-012-0157-0
- Katina, P. F., Pinto, C. A., Bradley, J. M., & Hester, P. T. (2014b). Interdependencyinduced risk with applications to healthcare. *International Journal of Critical Infrastructure Protection*, 7(1), 12–26. http://doi.org/10.1016/j.ijcip.2014.01.005
- Keating, C. B. (2009). Emergence in system of systems. In M. Jamshidi (Ed.), System of Systems Engineering (pp. 169–190). Hoboken, NJ: John Wiley & Sons, Inc.
- Keating, C. B. (2010). Balancing structural tensions in complex systems (pp. 1–8). Presented at the Proceedings of the American Society for Engineering Management, Fayetteville, Arkansas: ASEM Press.
- Keating, C. B. (2014). Governance implications for meeting challenges in the system of systems engineering field. In 2014 9th International Conference on System of Systems Engineering (SOSE) (pp. 154–159). Adelaide, Australia: IEEE. http://doi.org/10.1109/SYSOSE
- Keating, C. B., Calida, B. Y., Sousa-Poza, A. A., & Kovacic, S. F. (2010). Systems thinking. In D. Merino & J. Farr (Eds.), *The Engineering Management Handbook* (pp. 91–139). Huntsville, AL: ASEM Press.
- Keating, C. B., Jacobs, D., Sousa-Poza, A. A., & Pyne, J. C. (2001a). Advancing sociotechnical systems theory. In *Proceedings of the 22nd American Society for Engineering Management, National Conference* (pp. 336–341). Huntsville, AL: ASEM Press.
- Keating, C. B., & Katina, P. F. (2011). Systems of systems engineering: prospects and challenges for the emerging field. *International Journal of System of Systems Engineering*, 2(2/3), 234–256. http://doi.org/10.1504/IJSSE.2011.040556

- Keating, C. B., & Katina, P. F. (2012). Prevalence of pathologies in systems of systems. International Journal of System of Systems Engineering, 3(3/4), 243–267. http://doi.org/10.1504/IJSSE.2012.052688
- Keating, C. B., Katina, P. F., & Bradley, J. M. (2014). Complex system governance: concept, challenges, and emerging research. *International Journal of System of Systems Engineering*, 5(3), 263–288.
- Keating, C. B., Kauffmann, P., & Dryer, D. (2001b). A framework for systemic analysis of complex issues. *Journal of Management Development*, 20(9), 772–784.
- Keating, C. B., & Morin, M. (2001). An approach for systems analysis of patient care operations. *The Journal of Nursing Administration*, 31(7-8), 355-363.
- Keating, C. B., Peterson, W., & Rabadi, G. (2003a). Framing of complex system of systems engineering problems. In *Proceedings of the American Society for Engineering Management*, (pp. 8–15). St. Louis, MO.
- Keating, C. B., Rogers, R., Unal, R., Dryer, D., Sousa-Poza, A. A., Safford, R., Peterson, W., & Rabadi, G. (2003b). System of systems engineering. *Engineering Management Journal*, 15(3), 35–44.
- Keating, C. B., Sousa-Poza, A. A., & Kovacic, S. (2005). Complex system transformation: A system of systems engineering (SoSE) perspective. In 26th ASEM National Conference (pp. 200–207). Virginia Beach, VA.
- Keating, C. B., Sousa-Poza, A. A., & Mun, J. (2004). System of systems engineering methodology. EMSE: Old Dominion University.
- Keddy, B., Sims, S. L., & Stern, P. N. (1996). Grounded theory as feminist research methodology. *Journal of Advanced Nursing*, 23(3), 448–453.
- Keesing, R. M. (1981). *Cultural anthropology: A contemporary perspective* (2nd ed.). Sydney, Australia: Holt, Rinehard and Winston, Inc.
- Kelle, U. (2005). "Emergence" vs. "Forcing" of empirical data? A crucial problem of "Grounded Theory" reconsidered. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 6(2), Art. 27.
- Khalil, H. K. (2001). Nonlinear systems (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
- Kimball, A. W. (1957). Errors of the third kind in statistical consulting. Journal of the American Statistical Association, 52(278), 133–142.
- Kleene, S. C. (2002). Mathematical logic. Mineola, NY: Dover Publications.
- Klein, L. (1994). Sociotechnical/organizational design. In W. Karwowski & G. Salvendy (Eds.), *Organization and management of advanced manufacturing* (pp. 197–222). New York, NY: Wiley.
- Klir, G. J. (Ed.). (1972). *Trends in general systems theory* (1st ed.). New York, NY: John Wiley & Sons Inc.
- Klir, G. J. (Ed.). (1977). Applied general systems research: Recent developments and trends. New York, NY: Plenum Press.

- Klir, G. J. (1991). Facets of systems science. New York, NY: Kluwer Academic/Plenum Publishers.
- Koornstra, M., Lynam, D., Nilsson, G., Noordzij, P., Petterson, H.-E., Wegman, F., & Wouters, P. (2002). SUNflower: A comparative study of the development of road safety in Sweden, the United Kingdom, and the Netherlands (No. NUR. 976). Leidschendam: SWOV Institute for Road Safety Research. Retrieved from http://ec.europa.eu/transport/roadsafety library/publications/sunflower report.pdf
- Korzybski, A. (1994). Science and sanity: An introduction to non-Aristotelian systems and general semantics. New York, NY: Wiley.
- Kovacic, S. F., Sousa-Poza, A., & Keating, C. B. (2007). The National Centers for System of Systems Engineering: A case study on shifting the paradigm for system of systems. *Systems Research Forum*, 2(1), 52–59.
- Krippendorff, K. (1986). *A dictionary of cybernetics*. Norfolk, VA: The American Society for Cybernetics. Retrieved from http://repository.upenn.edu/asc_papers/224
- Kröger, W., & Zio, E. (2011). Vulnerable systems. London, UK: Springer-Verlag.
- Kumar, V., Abbas, A. K., Fausto, N., & Aster, J. (2010). *Robbins and Cotran: Pathologic* basis of disease (8 edition). Philadelphia, PA: Saunders.
- Landau, L. D., & Lifshitz, E. M. (1955). *Statistical physics*. London, UK: Pergamon Press.
- Laszlo, A., & Krippner, S. (1998). Systems theories: Their origins, foundations, and development. In J. S. Jordan (Ed.), Systems Theories and A Priori Aspects of Perception (pp. 47–74). Amsterdam, The Netherlands: Elsevier Science.
- Laszlo, E. (1996). *The systems view of the world: A holistic vision for our time*. Cresskill, NJ: Hampton Press.
- Lavrakas, P. J. (2008). *Encyclopedia of survey research methods*. Thousand Oaks, CA: SAGE Publications, Inc.
- Leedy, P. D., & Ormrod, J. E. (2010). *Practical research: Planning and design* (9th ed.). Upper Saddle River, NJ: Pearson.
- Levy, D. L. (2000). Applications and limitations of complexity theory in organization theory and strategy. In *Handbook of Strategic Management* (2nd ed.). New York, NY: Marcel Dekker, Inc.
- Li, J. (2013). The visible hand: From struggling survival to viable sustainability. In *Proceedings of the 56th Annual Meeting of the ISSS* (pp. 1–19). San Jose, CA: International Society for the Systems Sciences. Retrieved from http://journals.isss.org/index.php/proceedings56th/article/view/1959
- Lincoln, Y. S., & Guba, E. G. (1985). *Naturalistic inquiry*. Beverly Hills, CA: Sage Publications.

- Linsky, B. (2012). Logical constructions. In E. N. Zalta (Ed.), *The Stanford Encyclopedia of Philosophy (Winter 2012 Edition)* (pp. 1–8). Stanford, CA: Metaphysics Research Lab, CSLI, Stanford University. Retrieved from http://plato.stanford.edu/archives/win2012/entries/logical-construction/
- Lipton, P. (2002). Hume's problem: Induction and the justification of belief. *The British Journal for the Philosophy of Science*, 53(4), 579–583.
- Locke, K. (2001). Grounded theory in management research. Washington, DC: Sage Publications Ltd.
- Long, E. (1965). A history of pathology. Annals of Internal Medicine, 63(4), 741–741. http://doi.org/10.7326/0003-4819-63-4-741_4
- Luhmann, N. (2013). Introduction to systems theory. (P. Gilgen, Trans.). Malden, MA: Polity.
- Lutz, S., & Hedaa, L. (2006). Systems meeting networks: Applying general systems theory in the industrial network perspective. In *The 22nd Industrial Marketing and Purchasing Group Conference (IMP)* (p. 12). Milan, Italy. Retrieved from http://impgroup.org/uploads/papers/5749.pdf
- Lyden, J. A., & Klingele, W. E. (2000). Supervising organizational health. Supervision, 61(12), 3-6.
- Lynn, L. E. (1980). The user's perspective. In G. Majone & E. S. Quade (Eds.), *Pitfalls of analysis* (Vol. 8, pp. 89–115). New York, NY: John Wiley & Sons.
- Maani, K. E., & Cavana, R. Y. (2000). *Systems thinking and modelling*. New Zealand: Pearson Edication.
- Machol, R., & Miles, R. F. (1973). The engineering of large-scale systems. In R. F. Miles (Ed.), Systems concepts: Lectures on contemporary approaches to systems (pp. 33– 50). New York, NY: Wiley.
- Machol, R., Tanner, W. P., & Alexander, S. N. (Eds.). (1965). System engineering handbook. New York, NY: McGraw-Hill.
- MacLennan, B. (2007). Evolutionary psychology, complex systems, and social theory. *Soundings: An Interdisciplinary Journal*, 90(3/4), 169–189. http://doi.org/10.2307/41179154
- Macy, J. (1991). Mutual causality in Buddhism and general systems theory: The Dharma of natural systems. Albany, NY: SUNY Press.
- Maier, M. W. (1996). Architecting principles for systems-of-systems. In 6th Annual INCOSE Symposium (pp. 567–574). Boston, MA: INCOSE.
- Majone, G., & Quade, E. S. (Eds.). (1980). *Pitfalls of analysis*. New York, NY: John Wiley & Sons.
- Margulis, L. (1999). *Symbiotic planet: A new look at evolution* (1st ed.). New York, NY: Basic Books.

- Martin-Breen, P., & Anderies, J. M. (2011). *Resilience: A literature review* (p. 64). New York, NY: The Rockefeller Foundation. Retrieved from http://www.rockefellerfoundation.org/blog/resilience-literature-review
- Mason, J. (2002). Qualitative researching (2nd ed.). London, UK: Sage.
- Mason, R. O., & Mitroff, I. I. (1981). *Challenging strategic planning assumptions: Theory, cases, and techniques.* New York, NY: Wiley-Interscience.
- Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. Hingham, MA: D. Reidel Publishing Co.
- McCulloch, W. S. (1965). Embodiments of mind. Cambridge, MA: MIT Press.
- Mehra, J. (1987). Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger: The origins of the principles of uncertainty and complementarity. *Foundations of Physics*, 17(5), 461–506.
- Menke, C. (1999). The sovereignty of art: Aesthetic negativity in Adorno and Derrida. (N. Solomon, Trans.). Cambridge, MA: MIT Press.
- Merriam, S. B. (1998). *Qualitative research and case study applications in education*. San Francisco, CA: John Wiley & Sons.
- Merriam-Webster., Inc. (2006). Webster's new explorer encyclopedic dictionary. Springfield, MA: Federal Street Press.
- Merton, R. K. (1948). The bearing of empirical research upon the development of social theory. *American Sociological Review*, 13(5), 505. http://doi.org/10.2307/2087142
- Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). *Qualitative data analysis: A methods sourcebook* (3rd ed.). Washington, DC: SAGE Publications, Inc.
- Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. *Psychological Review*, 63(2), 81–97.
- Mingers, J., & Rosenhead, J. (2004). Problem structuring methods in action. European Journal of Operational Research, 152(3), 530–554.
- Mintzberg, H., Raisinghani, D., & Théorêt, A. (1976). The structure of the "unstructured" decision processes. *Administrative Science Quarterly*, 21(2), 246–275.
- Miser, H. J., & Quade, E. S. (1988a). Handbook of systems analysis: Craft issues and procedural choices (Vol. 2). New York, NY: North-Holland.
- Miser, H. J., & Quade, E. S. (1988b). Introduction: Craftsmanship in analysis. In H. J. Miser & E. S. Quade (Eds.), *Handbook of systems analysis: Craft issues and procedural choices* (Vol. 2, pp. 3–26). New York, NY: North-Holland.
- Mitroff, I. I. (1998). Smart thinking for crazy times: The art of solving the right problems. San Francisco, CA: Berrett-Koehler Publishers.
- Mitroff, I. I., & Emshoff, J. R. (1979). On strategic assumption-making: A dialectical approach to policy and planning. *The Academy of Management Review*, 4(1), 1–12.
- Mitroff, I. I., & Featheringham, T. R. (1974). On systemic problem solving and the error of the third kind. *Behavioral Science*, 19(6), 383–393.

- Moe, K. (2013). *Convergence: An architectural agenda for energy*. London, UK: Routledge.
- Moghaddam, A. (2006). Coding issues in grounded theory. *Issues in Educational Research*, 16(1), 52–66.
- Monod, J. (1974). On chance and necessity. In F. J. Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology (pp. 357–375). London, UK: Macmillan Press.
- Morse, J. M. (1994). Emerging from the data: The cognitive processes of analysis in qualitative. In J. M. Morse (Ed.), *Critical Issues in Qualitative Research Methods* (pp. 22–43). Thousand Oaks, CA: Sage.
- Morse, P. M., & Kimball, G. E. (1951). *Methods of operations research*. New York, NY: Wiley & Sons, Inc.
- Moses, J. (2002). The anatomy of large scale systems. In *Internal ESD Symposium* (pp. 1–8). Cambridge, MA: MIT ESD. Retrieved from http://esd.mit.edu/WPS/esd-wp-2002-01.pdf
- Mosteller, F. (1948). A k sample slippage test for an extreme population. *The Annals of Mathematical Statistics*, 19(1), 58–65.
- Murdoch, D. R., & Murdoch, D. (1989). Niels Bohr's Philosophy of Physics. Cambridge, MA: Cambridge University Press.
- Nagel, S. (2001). Conceptual theory and policy evaluation. *Public Administration and Management: An Interactive Journal*, 6(3), 71–76.
- Neale, P., Thapa, S., & Boyce, C. (2006). *Preparing a case study: A guide for designing and conducting a case study for evaluation input*. Watertown, MA: Pathfinder International.
- Nicolis, G., & Prigogine, I. (1975). Self-organization in non equilibrium systems. New York, NY: Wiley.
- Nunnally, J. (1978). Psychometric theory. New York, NY: McGraw-Hill.
- Nye, J. S., & Donahue, J. D. (2000). *Governance in a globalizing world*. Washington, DC: Brookings Institution Press.
- Odum, H. T. (1995). Self-organization and maximum empower. In C. A. S. Hall (Ed.), Maximum power: The ideas and applications of H.T.Odum (pp. 311–330). Boulder, CO: Colorado University Press.
- Padilla, J. J., Sousa-Poza, A., Tejada, A., & Kovacic, S. (2007). Towards a diagnostic framework for understanding complex situations. In *Proceedings of the 7th International Conference on Complex Systems*. Quincy, MA. Retrieved from http://www.tejadaruiz.net/papers/PadillaSousa-PozaTejadaKovacic-NECSI07.pdf
- Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2011). Engineering design: A systematic approach. (K. Wallace & L. T. M. Blessing, Eds. & Trans.) (3rd ed.). Berlin, Germany: Springer.

- Pareto, V. (1897). Cours d'économie politique professé à l'Université de Lausanne. Luzerne: University of Luzerne. Retrieved from http://ann.sagepub.com/content/9/3/128.full.pdf+html
- Paritsis, N. (2000). Models of intelligence and behavior. In N. Paritsis (Ed.), Systems and intelligence (pp. 65–80). Iraklio, Crete: Lector Publishing Company.
- Pasmore, W. A. (1988). Designing effective organizations: The sociotechnical systems perspective. New York, NY: John Wiley & Sons, Inc.
- Pattee, H. H. (1973). *Hierarchy theory: The challenge of complex systems*. New York, NY: Braziller.
- Patton, M. Q. (1990). *Qualitative evaluation and research methods* (Vol. 2). Newbury Park, CA: Sage.
- Patton, M. Q. (2002). *Qualitative research and evaluation methods* (3rd ed.). Thousand Oaks, CA: Sage Publications, Inc.
- Perrow, C. (1972). *Complex organizations: A critical essay*. Glenview, IL: Scott, Foresman and Company.
- Perrow, C. (1999). Normal accidents: Living with high risk technologies. New Jersey, NY: Princeton University Press.
- Philliber, S. G., Schwab, M. R., & Samsloss, G. (1980). Social research: Guides to a decision-making process. Itasca, IL: Peacock.
- Preston, C. C., & Colman, A. M. (1999). Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta Psychologica, 104(1), 1–15.
- Price, E., & Woodruff, D. P. (2012). Applications of the Shannon-Hartley theorem to data streams and sparse recovery. In 2012 IEEE International Symposium on Information Theory Proceedings (ISIT) (pp. 2446–2450). Cambridge, MA.
- Quade, E. S. (1980). Pitfalls in formulation and modeling. In G. Majone & E. S. Quade (Eds.), *Pitfalls of analysis* (Vol. 8, pp. 23–43). Chichester, England: Wiley-Interscience.
- Quade, E. S., & Miser, H. J. (1985). The context, nature, and use of systems analysis. In H. S. Misser & E. S. Quade (Eds.), *Handbook of systems analysis: Overview of* uses, procedures, applications, and practice (pp. 1–32). New York, NY: Elsevier Science Publishing Co. ., Inc.
- Quental, T. B., & Marshall, C. R. (2013). How the Red Queen drives terrestrial mammals to extinction. *Science*, *341*(6143), 290–292. http://doi.org/10.1126/science.1239431
- Reason, J. (1990). Human error. Cambridge, UK: Cambridge University Press.
- Reason, J. (2000). Human error: models and management. *BMJ*, *320*(7237), 768–770. http://doi.org/10.1136/bmj.320.7237.768
- Rechtin, E., & Maier, M. W. (2002). *The art of systems architecting* (2nd ed.). Boca Raton, FL: CRC Press.

- Rein, M., & White, S. H. (1977). Can policy research help policy? *National Affairs* (Number 49), pp. 119–136. Washington, DC.
- Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. *IEEE Control Systems*, 21(6), 11–25. http://doi.org/10.1109/37.969131
- Ríos, J. P. (2010). Models of organizational cybernetics for diagnosis and design. *Kybernetes*, 39(9/10), 1529–1550. http://doi.org/10.1108/03684921011081150
- Ríos, J. P. (2012). Design and diagnosis for sustainable organizations: The viable system method. New York, NY: Springer Berlin Heidelberg.
- Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155-169. http://doi.org/10.1007/BF01405730
- Robinson, W. S. (1951). The logical structure of analytic induction. *American* Sociological Review, 16(6), 812–818.
- Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. *Philosophy of Science*, 10(1), 18–24.
- Rouse, W. B., & Boff, K. R. (2003). Value streams in science and technology: A case study of value creation and intelligent tutoring systems. *Systems Engineering*, 6(2), 76–91. http://doi.org/10.1002/sys.10038
- Ryan, A. J. (2008). *What is a systems approach?* (arXiv e-print No. 0809.1698). Ithaca, NY: Cornell University Library. Retrieved from http://arxiv.org/abs/0809.1698
- Sage, A. P., & Cuppan, C. D. (2001). On the systems engineering and management of systems of systems and federations of systems. *Information-Knowledge-Systems Management*, 2(4), 325–345.
- Saldaña, J. (2013). *The coding manual for qualitative researchers* (2nd ed.). Thousand Oaks, CA: Sage Publications Ltd.
- Samuelson, P. A., & Nordhaus, W. D. (2001). *Microeconomics* (17th ed.). New York, NY: McGraw-Hill.
- Schlanger, K. J. (1956). Systems engineering-key to modern development. *IRE Transactions on Engineering Management*, *EM-3*(3), 64–66.
- Schneider, V., & Bauer, J. M. (2007). Governance: Prospects of complexity theory in revisiting systems theory. In Annual Meeting of the Midwest Political Science Association (pp. 1–36). Chicago, IL. Retrieved from https://www.msu.edu/~bauerj/complexity/schneider.pdf
- Schneider, V., & Kenis, P. (1996). Verteilte kontrolle: Institutionelle steuerung in modernen gesellschaften. In P. Kenis & V. Schneider (Eds.), Organisation und netzwerk: Institutionelle steuerung in wirtschaft und politik (pp. 9-43). Frankfurt: Germany: Frankfurt/Main.
- Schoderbek, P. P., Schoderbek, C. G., & Kefalas, A. G. (1985). *Management systems: Conceptual considerations* (3rd ed.). Dallas, TX: Business Publications.

- Schön, D. (1983). *The reflective practitioner: How professionals think in action*. London, UK: Temple Smith.
- Schwandt, N. K. (1994). Constructivist, interpretivist approaches to human inquiry. In N. K. Denzin & Y. S. Lincoln (Eds.), *Handbook of qualitative research* (2nd ed., pp. 118–137). Thousand Oaks, CA: SAGE.
- Schwaninger, M. (2009). Intelligent organizations: Powerful models for systemic management (2nd ed.). Heidelberg, Germany: Springer Science & Business Media.
- Segal, L. (2001). The dream of reality: Heinz von Foerster's constructivism (2nd ed.). New York, NY: Springer- Verlag.
- Senge, P. M. (1990). *The fifth discipline : The art and practice of the learning organization*. New York, NY: Doubleday/Currency.
- Shannon, C. E. (1948a). A mathematical theory of communication: Part 1. Bell System *Technical Journal*, 27(3), 379–423.
- Shannon, C. E. (1948b). A mathematical theory of communication: Part 2. Bell System Technical Journal, 27(4), 623–656.
- Shannon, C. E. (1949). Communication theory of secrecy systems. *Bell System Technical Journal*, 28(4), 656–715.
- Shannon, C. E., & Weaver, W. (1949). *The mathematical theory of communication*. Champaign, IL: University of Illinois Press.
- Sharpe, P. B. (1940). A critical analysis of the canons of science. *Philosophy of Science*, 7(2), 159–167.
- Shaughnessy, J. J., Zechmeister, E. B., & Zechmeister, J. S. (2011). Research methods in psychology (9th ed.). New York, NY: McGraw-Hill.
- Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. *Education for Information*, 22(2), 63–75.
- Sheptycki, J. (2004). Organizational pathologies in police intelligence systems: Some contributions to the lexicon of intelligence-led policing. *European Journal of Criminology*, 1(3), 307–332. http://doi.org/10.1177/1477370804044005
- Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99–118. http://doi.org/10.2307/1884852
- Simon, H. A. (1956). Rational choice and the structure of the environment. *Psychological Review*, 63(2), 129–138.
- Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: MIT Press.
- Simon, H. A. (1973). The organization of complex systems. In H. H. Pattee (Ed.), *Hierarchy theory: The challenges of complex systems* (pp. 1–27). New York, NY: George Braziller.
- Simon, H. A. (1974). How big is a chunk? Science, 183(4124), 482-488.
- Skyttner, L. (1996). *General systems theory: An introduction*. New York, NY: Macmillan Press.

- Skyttner, L. (2005). General systems theory: Problems, perspectives, practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.
- Smith, A. (1904). An inquiry into the nature and causes of the wealth of nations. (E. Cannan, Ed.). Library of Economics and Liberty. Retrieved from http://www.econlib.org/library/Smith/smWN.html
- Smith, C. (1994). A recursive introduction to the theory of computation. New York, NY: Springer Science & Business Media.
- Smith, K. T. (2011). Needs analysis: Or, how do you capture, represent, and validate user requirements in a formal manner/notation before design. In W. Karwowski, M. M. Soares, & N. A. Stanton (Eds.), *Human factors and ergonomics in consumer product design: Methods and techniques* (pp. 415–428). Boca Raton, FL: Taylor & Francis Group.
- Smuts, J. (1926). Holism and evolution. New York, NY: Greenwood Press.
- Sousa-Poza, A. A., Kovacic, S., & Keating, C. B. (2008). System of systems engineering: An emerging multidiscipline. *International Journal of System of Systems Engineering*, 1(1/2), 1–17. http://doi.org/10.1504/IJSSE.2008.018129
- Spradley, J. P. (1979). *The ethnographic interview*. New York, NY: Holt, Rinehart and Winston.
- Stacey, R. (1996). *Complexity and creativity in organizations* (1st ed.). San Francisco, CA: Berrett-Koehler Publishers.
- Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA: SAGE.
- Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. New York, NY: McGraw-Hill.
- Stichweh, R. (2011). Systems Theory. In B. Badie, D. Berg-Schlosser, & L. Morlino (Eds.), *International Encyclopedia of Political Science* (Vol. 8, pp. 2579–2588). New York, NY: SAGE.
- Stiglitz, J. E. (1991). The invisible hand and modern welfare economics (No. NBER Working Paper No. W3641) (p. 50). Cambridge, MA: National Bureau of Economic Research. Retrieved from http://www.nber.org/papers/w3641.pdf
- Strauss, A. L. (1987). *Qualitative analysis for social scientists*. Cambridge, MA: Cambridge University Press.
- Strauss, A. L., & Corbin, J. M. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage Publications.
- Strauss, A. L., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage.
- Strijbos, S. (2010). Systems thinking. In R. Frodeman, J. T. Klein, & C. Mitcham (Eds.), *The Oxford Handbook of Interdisciplinarity* (pp. 453–470). New York, NY: Oxford University Press, USA.
- Sussman, J. M. (2005). Perspectives on intelligent transportation systems. New York, NY: Springer.

- Taleb, N. N. (2010). *The black swan: The impact of the highly improbable*. New York, NY: Random House Trade Paperbacks Edition.
- Tan, K. T. K. (2008). *The first fundamental theorem of welfare economics*. University of Chicago. Retrieved from http://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/REUPapers/Tan.pdf
- Tarnas, R. (2007). Cosmos and psyche: Intimations of a new world view (Reprint edition). New York, NY: Plume.
- Taylor, J. C., & Felten, D. F. (1993). Performance by design: Sociotechnical systems in North America. Englewood Cliffs, NJ: Prentice Hall.
- Thissen, W. A., & Herder, P. M. (2003). *Critical Infrastructures: State of the art in research and application*. Boston, MA: Kluwer Academic Publishers.
- Thomas, G. (2011). A typology for the case study in social science following a review of definition, discourse, and structure. *Qualitative Inquiry*, 17(6), 511–521.
- Thomas, G., & James, D. (2006). Reinventing grounded theory: Some questions about theory, ground and discovery. *British Educational Research Journal*, 32(6), 767–795.
- Thompson, C. L., & Cuff, J. M. (2012). God and nature: A theologian and a scientist conversing on the divine promise of possibility. New York, NY: A&C Black.
- Tolman, E. C. (1948). Cognitive maps in rats and men. *Psychological Review*, 55(4), 189–208.
- Tolone, W., Johnson, E., Lee, S.-W., Xiang, W.-N., Marsh, L., Yeager, C., & Blackwell, J. (2009). Enabling system of systems analysis of critical infrastructure behaviors. In S. Geretshuber & R. Setola (Eds.), *Critical Information Infrastructure Security* (Vol. 5508, pp. 24–35). New York, NY: Springer.
- Trist, E. L., & Bamforth, K. W. (1951). Some social and psychological consequences of the Longwall Method of coal-getting: An examination of the psychological situation and defences of a work group in relation to the social structure and technological content of the work system. *Human Relations*, 4(1), 3–38.
- Troncale, L. (1977). Linkage propositions between fifty principal systems concepts. In G. J. Klir (Ed.), *Applied general systems research: Recent development and trends* (pp. 29–52). New York, NY: Plenum Press.
- Turchin, V., & Joslyn, C. (1993). The metasystem transition. In F. Heylighen, V.
 Turchin, & C. Joslyn (Eds.), *Principia Cybernetica Web [Principia Cybernetica]*.
 Brussels, Belgium. Retrieved from http://pespmc1.vub.ac.be/MST.html
- Ulrich, W. (1983). Critical heuristics of social planning: A new approach to practical philosophy. Bern/Stuttgart: Paul Haupt.
- Ulrich, W. (1987). Critical heuristics of social systems design. *European Journal of Operational Research*, 31(3), 276–283.

- Umpleby, S., Heylighen, F., & Hu, J. (1990). The ASC glossary. Retrieved from ftp://ftp.vub.ac.be/pub/papers/Principia_Cybernetica/Nodes/Cybernetics_glossary.t xt
- Urquhart, C. (2002). Regrounding grounded theory or reinforcing old prejudices? A brief reply to Bryant. *Journal of Information Technology Theory and Application*, 4(3), 43–54.
- USAF SAB. (2005). System of systems engineering for Air Force capability development: Executive summary (No. SAB-TR-05-04). Washington, DC: US Air Force Scientific Advisory Board. Retrieved from http://www.dtic.mil/get-trdoc/pdf?AD=ADA442612
- van den Tweel, J. G., & Taylor, C. R. (2010). A brief history of pathology. Virchows Archive 457(1), 3–10. http://doi.org/10.1007/s00428-010-0934-4
- van Gigch, J. P. (1987). Decision making about decision making: Metamodels and metasystems (Vol. 7). Cambridge, MA: Abacus Press.
- van Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1(1), 1–30.
- Varela, H. (1979). Principles of biological autonomy. New York, NY: North Holland.
- Vennix, J. (1996). Group model building: Facilitating team learning using system dynamics (1st ed.). Chichester, UK: Wiley.
- von Bertalanffy, L. (1950). The theory of open systems in physics and biology. *Science*, 111(2872), 23-29.
- von Bertalanffy, L. (1968). General system theory: Foundations, developments, applications. New York, NY: George Braziller.
- von Bertalanffy, L. (1972). The history and status of general systems theory. Academy of Management Journal, 15(4), 407–426. http://doi.org/10.2307/255139
- von Foerster, H. (1973). On constructing a reality. In W. F. E. Preiser (Ed.), Environmental design research: Symposia and workshops (pp. 35–46). Stroudsburg, PA: Dowden, Hutchinson and Ross.
- von Foerster, H., Mead, M., & Teuber, H. L. (1953). Cybernetics: Circular causal and feedback mechanisms in biological and social systems. New York, NY: Josiah Macy, Jr Foundation.
- Waddington, C. H. (1957). The strategy of genes: A discussion of some aspects of theoretical biology. London, UK: Allen and Unwin.
- Waddington, C. H. (1968). Towards a theoretical biology. Nature, 218(5141), 525-527.
- Wadsworth, Y. (1998). What is participatory action research? (Paper 2). Queensland, Australia: Action research international. Retrieved from http://www.aral.com.au/ari/p-ywadsworth98.html#a fn3
- Walker, D., & Myrick, F. (2006). Grounded theory: An exploration of process and procedure. *Qualitative Health Research*, *16*(4), 547–559.

- Warfield, J. N. (1976). Societal systems: Planning, policy and complexity. New York, NY: Wiley-Interscience.
- Warfield, J. N. (1995). Spreadthink: Explaining ineffective groups. Systems Research, 12(1), 5–14. http://doi.org/10.1002/sres.3850120104
- Warfield, J. N. (1999). Twenty laws of complexity: Science applicable in organizations. Systems Research and Behavioral Science, 16(1), 3–40.
- Watt, K., & Craig, P. (1988). Surprise, ecological stability theory. In C. A. S. Holling (Ed.), *The anatomy of surprise* (pp. 1–20). New York, NY: John Wiley.
- Weaver, W. (1948). Science and complexity. American Scientist, 36(4), 536-544.
- Weinberg, G. M. (1975). An introduction to general systems thinking. New York, NY: Wiley-Interscience.
- Wellington, A. M. (1887). *The economic theory of the location of railways*. New York, NY: Wiley.
- Wertz, F. J., Charmaz, K., McMullen, L. M., Josselson, R., Anderson, R., & McSpadden, E. (2011). Five ways of doing qualitative analysis: Phenomenological psychology, grounded theory, discourse analysis, narrative research, and intuitive inquiry. New York, NY: Guilford.
- Wheeler, H. (1970). *Center occasional paper*. Santa Barbara, CA: Center for the Study of Democratic Institutions.
- White, J., & Krippner, S. (Eds.). (1977). Future science: Life energies and the physics of paranormal phenomena (1st ed.). Garden City, NY: Anchor Books.
- Whyte, W. F. (Ed.). (1943). *Street corner society*. Chicago, IL: University of Chicago Press.
- Whyte, W. F. (Ed.). (1991). *Participatory action research*. Thousand Oaks, CA: Sage Publications, Inc.
- Wiener, N. (1948). *Cybernetics: Or control and communication in the animal and the machine*. Cambridge, MA: MIT Press.
- Wildavsky, A. (1988). Searching for safety. New Brunswick, NJ: Transaction Publishers.
- Wilson, B. (1984). *Systems: Concepts, methodologies, and applications*. New York, NY: John Wiley & Sons, Inc.
- Wright, J. (2003). The ethics of economic rationalism. Sydney, Australia: UNSW Press.
- Yates, F. E. (1978). Complexity and the limits to knowledge. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 235(5), R201– R204.
- Yin, R. K. (2009). Case study research: Design and methods (4th ed., Vol. 5). Thousand Oaks, CA: SAGE Publications, Inc.
- Yolles, M. (2006). Organizations as complex systems: An introduction to knowledge cybernetics. Greenwich, CT: Information Age Publishing.

- Yolles, M. (2007). Modelling pathologies in social collectives. *European Journal of International Management*, 1(1/2), 81–103.
- Young, O. R. (1964). A survey of general systems theory. General Systems, 9, 61-80.
- Zipf, G. K. (1949). *Human behavior and the principle of least effort* (Vol. xi). Oxford, UK: Addison-Wesley Press.

APPENDIX A: CODEBOOK FOR SYSTEMS THEORY

As indicated in Chapter IV, this research uses *systems theory* as dataset in connection with *problem formulation*. This appendix provides the 30 constituent propositions of systems theory - inclusive of laws, principles, and theorems – based on Adams et al. (2014). These 30 propositions formed an initial 'dataset' for building 'codes' and 'categories' for systems theory-based pathologies. Following Miles et al. (2014) along with supplements from Saldaña (2013), the researcher codes the meaning associated with the concepts of systems theory in relation to problem formulation.

The developed codebook consists of 30 codebook pages with each page providing a concept of systems theory that is under consideration. A code name for the concept is then provided. This is followed by a detailed description of the concept under consideration. In some cases, the researcher maintained the verbatim text as used in Adams et al. (2014). However, in several cases, the definition of the concept was expanded. A citation of author(s) who strongly influenced the concept is provided. The researcher also offers conditions that merit inclusion/exclusion of the concept in this research. An example of 'data text' that could best represent the concept is provided. In some cases, extreme examples of the code are offered as well as those that do not represent the concept. *Initial* insights into how the code relates to problem formulation are offered. Finally, the aspects of pathology as violation of the concept are provided. Full citations to reference material are provided at the each of each code.

287

Principle of circular causality		
Short description	'circular causality'	
Detailed description	In linear thinking, the interest is cause and effect such that A	
	causes B, B causes C, etc. However, circular causality suggests	
	that the relationship between A and B is not linear. "An effect	
	becomes a causative factor for future effects, influencing them	
	in a manner particularly subtle, variable, flexible and of an	
	endless number of possibilities" (Adams et al. 2014, p. 117). A	
	or B is influenced by multiple factors which might include B	
	and B	
Seminal author(s)	Korzybski, 1994	
Inclusion criteria	This principle suggests a need to go beyond cause and effect to	
	include systems beyond those that direct influence system of	
	interest such as interdependent systems and their relationships	
Exclusion criterion	This principle would not be included if it is not used to	
	describe a system and is not part of 'systems theory'	
Typical exemplars	This concept is applicable to living organisms as well as	
	machines. Most common application involves understanding	
	effect (not the relationship between cause and effect). In	
	circular causality if A makes B happen, B can also make A	
	happen	
Atypical exemplars	Not needed	
'close' but 'no'	'feedback' (Clemson, 1984)	
Relevant note	This principle suggests that there is an endless number of	
	possible issues that might affect system behavior whose	
	relationship to the system is not easily understood	
Aspect(s) of pathology	Lack of consideration of this principle, especially in complex	
	systems, might result in a limited level of analysis and	
	synthesis of issues influencing performance of complex	
	systems including behaviors	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, *17*(1), 112–123.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.
- Korzybski, A. (1994). Science and sanity: An introduction to non-Aristotelian systems and general semantics. New York: NY: Wiley.

Theory of communication		
Short description	'communication'	
Detailed description	"transference of representative substitutions for that which	
	should be communicated" (Skyttner, 2005, p. 207). This	
	transference can include objects, energy, or information. "In	
	communication, the amount of information is defined, in the	
	simplest cases, to be measured by the logarithm of the number	
	of available choices. Because most choices are binary, the unit	
	of information is the <i>bit</i> , or binary digit" (Adams et al. 2014, p.	
	117)	
Seminal author(s)	Shannon, 1948a; 1948b; Weaver, 1948	
Inclusion criteria	This theory suggest that there is a need to have a number of	
	different communication systems that can enable transfer of	
	information	
Exclusion criterion	This theory would not be included if it is not used to	
	understand systems. Something is not information if sender,	
	means for sending, or receiver is missing (Skyttner, 2005)	
Typical exemplars	This theory has applications in living organisms and machines.	
	Most common application of the theory of communication	
	involves transference of acoustic and visual information. In	
	machines, the theory evokes concepts of information	
	processing, storing, and retrieval.	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	This theory deals with information and "In this matter it is	
	mainly concerned with the process by which messages can be	
	coded, transmitted, and decoded" (Skyttner, 2005, p. 204)	
Aspect(s) of pathology	A lack of consideration of theory of communication or an	
	ineffective communication system might result lack of	
	transference of information (messages) and/or partial delivery	
	of information. Thus, information processing, storing, retrial,	
	and use becomes impossible; affecting organizational	
	operations and performance (Katina and Keating, 2012; Ríos,	
	2012)	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Keating, C. B., & Katina, P. F. (2012). Prevalence of pathologies in systems of systems. International Journal of System of Systems Engineering, 3(3/4), 243–267.
- Ríos, J. P. (2012). Design and diagnosis for sustainable organizations: The viable system method. New York: NY: Springer Berlin Heidelberg.

- Shannon, C. E. (1948a). A mathematical theory of communication: Part 1. Bell System Technical Journal, 27(3), 379–423.
- Shannon, C. E. (1948b). A mathematical theory of communication: Part 2. *Bell System Technical Journal*, 27(4), 623–656.
- Shannon, C. E., & Weaver, W. (1949). *The mathematical theory of communication*. Champaign: IL: University of Illinois Press.
- Skyttner, L. (2005). General systems theory: Problems, perspectives, practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.

Principle of complementarity	
Short description	'complementarity'
Detailed description	Any two different perspectives or models about a system will
	reveal truths about that systems are neither entirely
	independent nor entirely compatible (Adams et al. 2014)
Seminal author(s)	Bohr, 1928
Inclusion criteria	This principle suggests that there is a need to consider a variety
	of perspectives when dealing with any complex systems.
	Moreover, there is no 'right' or 'wrong' perspective; only
· · · · · · · · · · · · · · · · · · ·	utility offered by the specific perspectives
Exclusion criterion	This principle would not be included if it were not used to
	describe systems. In simple systems, it is likely that there are
	very varying perspectives
Typical exemplars	Light is a wave and particle at the same time (Bohr, 1928).
	Both concepts describe light. However, an effective team
	selects specific perspectives as need arises
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	In complex organizations, there is a higher probability of
	having a variety of perspectives on different issues (e.g.,
	operations, practices, etc.). These perspectives "reveal truths
	about the organization that are only partially independent and
	only partially compatible" (Clemson, 1984, p. 206)
Aspect(s) of pathology	A lack of consideration of principle of complementary might
	limit surfacing of relevant perspectives that might be pertinent
	to current and future complex system development

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. *Nature*, *121*(3050), 580–590.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.

Control theory	
Short description	'control'
Detailed description	Complex systems have the ability to select their input so as to
	influence the output (desired). In other words, this is "the
	process by means of which a whole entity retains its identity
	and/or performance under changing circumstances" (Adams et
	al. 2014, p. 117)
Seminal author(s)	Checkland, 1993; Krippendorff, 1986
Inclusion criteria	This principle defines a critical characteristic of complex
	system ability for survival
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	Open loop and closed loop control systems
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	Cybernetic control is defined as "purposive influence toward a
	predefined goal involving continuous comparison of current
	states to future goals" (Skyttner, 2005, p. 77). This suggest a
	need for mechanisms that enable processing of environmental
	information to archive desired results
Aspect(s) of pathology	A lack of control system to process and distribute information
	might result in the system that does not have means to control
	environmental information. The system becomes overwhelmed
	and collapses

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Checkland, P. B. (1993). Systems thinking, systems practice. New York, NY: John Wiley & Sons.

Krippendorff, K. (1986). A dictionary of cybernetics. Norfolk, Virginia: The American Society for Cybernetics. Retrieved from http://repository.upenn.edu/asc_papers/224

Skyttner, L. (2005). General systems theory: Problems, perspectives, practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.

Darkness principle	
Short description	'darkness'
Detailed description	No system can be known completely (Skyttner, 2005). This is
	because "Each element in the system is ignorant of the
	behavior of the system as a whole, it responds only to
	information that is available to it locallyIf each element
	'knew' what was happening to the system as a whole, all of the
	complexity would have to be present in that element" (Adams
	et al. 2014, p. 117)
Seminal author(s)	Cilliers, 1998
Inclusion criteria	This principle is relevant to the concept of effective
	management. Effective managers recognize "survival worthy
	systems make no attempt to know all about those
	systems[and] avoid knowing aboutirrelevant details"
	(Clemson, 1984, p 204)
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	Top management do not try to understand every detail at local
	levels
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	Since a "manager cannot possibly be aware of all possible of
	all the states of his subordinateit is not necessary to enter the
	black box to understand the nature of the functions it performs"
	(Beer, 1979, p. 40)
Aspect(s) of pathology	This principle suggest that a need to treat certain elements of
	complex systems as black boxes. Failure to utilize this
	principle might result in micro-management

Additional notes:

No system or the details of its components and interactions can ever be completely known (Skyttner, 1996)

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Beer, S. (1979). The heart of the enterprise. New York, NY: John Wiley & Sons.
- Cilliers, P. (1998). Complexity and postmodernism: Understand complex systems. New York: NY: Routledge.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells. Kent: UK: Abacus Press.

- Skyttner, L. (1996). *General systems theory: An introduction*. New York: NY: Macmillan Press.
- Skyttner, L. (2005). General systems theory: Problems, perspectives, practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.

1

Dynamic equilibrium	
Short description	'dynamic equilibrium'
Detailed description	For a system to be in a state of equilibrium, all subsystems
	must be in a floating (not steady or stable) state characterized
	by invisible movements and preparedness for change
	equilibrium (Adams et al. 2014)
Seminal author(s)	D'Alembert, 1743
Inclusion criteria	This principle helps establish necessary and sufficient
	conditions for whole system dynamics
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	Reactants are converted into products and products are
	converted to reactants at an equal and constant rate.
	Equilibrium deals with state of equal opposite rates and not
	equal concentrations
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	An organization in the state of dynamic equilibrium, remains in
	this state unless all its subsystems (units) change their states –
	which must have been in the state of dynamic equilibrium
Aspect(s) of pathology	A lack of consideration of this principle could result in not
	working towards a stable state of dynamic equilibrium or
	moving away from a steady state of dynamic equilibrium

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- D'Alembert, J. (1743). *Traité de dynamique*. Paris, France: David l'Ainé. Retrieved from https://archive.org/details/traitdedynamiqu00dalgoog

Principle of emergence	
Short description	'emergence'
Detailed description	Complex systems exhibit properties which are meaningful only
	when attributed to the whole, not its parts. "Every model of
	systems exhibits properties as a whole entity which derive from
	it component activities and their structure, but cannot be
	reduced to them" (Adams et al. 2014, p. 117).
Seminal author(s)	Aristotle, 2002
Inclusion criteria	This principle suggests that there is need to understand wholes
	and parts alike. Knowing parts or processes of subsystems does
	not equate to understanding behavior that occurs as a result of
	their
	interactions
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	Weather, life
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	This principle suggests that understanding complex systems
	exhibit properties and behaviors that cannot be understood by
	studying parts or elements of the complex system
Aspect(s) of pathology	A lack of consideration of this principle could result in a an
	attempt to make a direct correlation between local issues
	(behavior) and system-wide issues (emergent issues)

Additional notes:

"Whole entities exhibit properties which are meaningful only when attributed to the whole, not its parts.....Every model of human activity system exhibits properties as a whole entity which derive from its component activities and not their structure, but cannot be reduced to them." (Checkland, 1993, p. 314)

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Aristotle. (2002). *Metaphysics: Book H Form and being at work*. (J. Sachs, Trans.) (2nd ed.). Santa Fe, CA: Green Lion Press.
- Checkland, P. B. (1993). Systems thinking, systems practice. New York, NY: John Wiley & Sons.

Principle of equifinality	,
Short description	'equifinality'
Detailed description	If a steady state is reached in an open system, it is independent
	of the initial conditions, and determined only by the system
	parameters (Adams et al., 2014). "Hence, the same final state
	may be reached from different initial conditions and in
	different ways" (von Bertalanffy, 1968, p. 40)
Seminal author(s)	von Bertalanffy, 1950
Inclusion criteria	The principle suggests that complex systems, more specific
	open systems, exhibit equifinality principle and influenced by
	"soul-like vitalistic factor which governs processes in foresight
	goal" (von Bertalanffy, 1968, p. 40)
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"development of a normal organism from a whole, a divided,
	or a fused ova, or from any pieces as in hydroids or
	planarians" (von Bertalanffy, 1968, 142)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	The principle deals helps to place focus on different initial
	conditions that may all lead to the same state of a complex
	system (positive or otherwise)
Aspect(s) of pathology	A lack of consideration of this principle may lead an analyst to
	assume a one-to-one mapping between cause and effect. It's
	important to recognize that the final state of the system can be
	caused by a multitude of factors

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- von Bertalanffy, L. (1950). An outline of general system theory. *The British Journal for the Philosophy of Science*, *1*(2), 134–165.
- von Bertalanffy, L. (1968). General system theory: Foundations, developments, applications. New York: George Braziller.

Principle of feedback	
Short description	'feedback'
Detailed description	"The result of behaviour is always scanned and its success or
	failure modifies future behaviour" (Skyttner, 2005, p. 102).
	"All purposeful behavior may be considered to require negative
	feed-back. If a goal is to be attained, some signals from the
	goal are necessary at some time to direct the behavior" (Adams
	et al. 2014, p. 117)
Seminal author(s)	Wiener, 1948
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"one form of steering engine of a ship carries the reading of a
	wheel to an offset from the tiller, which so regulates the valves
	of the steering engine as to more the tiller in such a way as to
	turn these valves off" (Wiener, 1948, p. 6)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	When we set up appropriate feedback loops we can be
	confident that the system will achieve results (Clemson, 1984)
Aspect(s) of pathology	A lack of consideration of this principle suggests that an
	analysis cannot regulate behavior of a complex system

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Clemson, B. (1984). *Cybernetics: A new management tool.* Tunbridge Wells, Kent: UK: Abacus Press.
- Skyttner, L. (2005). General systems theory: Problems, perspectives, practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.

Wiener, N. (1948). *Cybernetics: Or control and communication in the animal and the machine*. Cambridge: MA: MIT Press.

Principle of hierarchy	
Short description	'hierarchy'
Detailed description	"Entities meaningfully treated a wholes are built up of smaller
	entities which are themselves wholes and so on. In a
	hierarchy, emergent properties denote the levels" (Adams et al.
	2014, p. 117)
Seminal author(s)	Pattee, 1973
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"Nature has a strong tendency to evolve sets of semi-
	autonomous systems nested within larger systems which are in
	turn nested within larger systems" (Clemson, 1984, p. 207)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	Complex organizations can be organized into hierarchies with
	each level being made u of integrated systems
Aspect(s) of pathology	A lack of consideration of this principle implies failure to
	recognize a nature structure of complex wholes and the
	relationships to subsystems. The subsystems could be complex
	in their own right

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.
- Pattee, H. H. (1973). *Hierarchy theory: The challenge of complex systems*. New York: NY: Braziller.

Principle of holism	
Short description	'holism'
Detailed description	"The whole is not something additional to the part: it is the
	parts in a definitive structural arrangement and with mutual
	activities that constitute the whole. The structure and the
	activities differ in character according to the stage of
	development of the whole; but the whole is just this specific
	structure of parts with their appropriate activities and
	functions" (Adams et al. 2014, p. 117)
Seminal author(s)	Smuts, 1926
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"A formal [complex] organization has holistic properties
	possessed by none of its parts. Each of the units of the
	organization has properties not possessed by the organization
	as a whole" (Clemson, 1984, p. 203)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	This principle suggest that good decision-making in complex
	systems requires recognition of system holistic properties as
	well as properties of parts in the complex system
Aspect(s) of pathology	A lack of consideration of holistic properties – focusing of
	properties of the parts – leads to degradation of properties of
	the whole. This results in sub-optimized system

Additional notes:

"It is very important to recognize that the whole is not something additional to the parts: it is the parts in a definite structural arrangement and with mutual activities that constitute the whole. The structure and the activities differ in character according to the stage of development of the whole; but the whole is just this specific structure of parts with their appropriate activities and functions." (Smuts, 1926, p. 104). Therefore, cannot understand a complex system by reduction to the component or entity level (Skyttner, 1996)

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, *17*(1), 112–123.
- Clemson, B. (1984). Cybernetics: A new management tool. Tunbridge Wells, Kent: UK: Abacus Press.
- Skyttner, L. (1996). *General systems theory: An introduction*. New York: NY: Macmillan Press.

Smuts, J. (1926). Holism and evolution. New York: NY: Greenwood Press.

Principle of homeorhesis		
Short description	'Homeorhesis'	
Detailed description	The concept encompassing dynamical systems which return to	
	a trajectory, even if disturbed in development. In homeorhesis,	
	systems return to a particular path of a trajectory while in	
	homeostasis systems which return to a particular state (Adams	
	et al. 2014)	
Seminal author(s)	Waddington, 1957; 1968	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	Composition of Earth's atmosphere, hydrosphere, and	
	lithosphere are regulated around 'set points' as in homeostasis,	
	but those set points change with time (Margulis, 1999)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	This principle suggests a need to consider a path of trajectory	
	that a complex system takes in order to arrive at a preferred	
	destination.	
Aspect(s) of pathology	Lack of consideration of this principle creates the right	
	conditions for ignoring issues that can halt the path of	
	trajectory of a complex system. Need to design and maintain	
	mechanisms that ensure system remains of the right trajectory	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Margulis, L. (1999). *Symbiotic planet: A new look at evolution* (1 edition.). New York: Basic Books.

Waddington, C. H. (1957). The strategy of genes: A discussion of some aspects of theoretical biology. London, UK: Allen and Unwin.

Waddington, C. H. (1968). Towards a theoretical biology. Nature, 218(5141), 525-527.

Principle of homeostasis		
Short description	'homeostasis'	
Detailed description	"The property of an open system to regulate its internal	
	environment so as to maintain a stable condition, by means of	
	multiple dynamic equilibrium adjustments controlled by	
	interrelated regulation feedback mechanisms" (Adams et al.	
	2014, p. 117)	
Seminal author(s)	Cannon, 1929	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	A thermostat. It detects changes in the condition being	
	regulated. These essential "variables should be continuously	
	monitored so that serious departures can be detected and	
	corrected immediately" (Clemson, 1984, p. 215)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	A complex system survives so long as its essential variables are	
	maintained (Skyttner, 2005)	
Aspect(s) of pathology	A lack of consideration of this principle could result in not	
	knowing the essential elements of a complex system and	
	developing mechanisms for detecting serious departures or	
	corrections necessary for system survival	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Cannon, W. B. (1929). Organization for physiological homeostasis. *Physiological Reviews*, 9(3), 399–431.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.
- Skyttner, L. (2005). General systems theory: Problems, perspectives, practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.

Theorem of information redundancy		
Short description	'information redundancy'	
Detailed description	"The number of bits used to transmit a message minus the	
	number of bits of actual information in the message" (Adams et	
	al. 2014, p. 117)	
Seminal author(s)	Shannon and Weaver, 1949	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	Errors in information transmission can be protected against (to	
	any level of confidence required) by increasing the redundancy	
	in the messages (Shannon & Weaver, 1949	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	This principle suggests a need to have redundancy of messages	
	to avoid errors in communication	
Aspect(s) of pathology	A lack of consideration of this principle could result in errors in	
	transmission of information such that information is not	
	received; waste of capacity required to transmission of	
	redundant information; lack of balance between "tolerable	
	levels of error and tolerable amount of redundancy required"	
	(Clemson, 1984, p. 211)	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.

Shannon, C. E., & Weaver, W. (1949). *The mathematical theory of communication*. Champaign: IL: University of Illinois Press.

Principle of minimal critical specification		
Short description	'minimal critical specification'	
Detailed description	This principle has two aspects, negative and positive. The	
	negative aspect of the principles states that no more should be	
	specified than is absolutely essential for design; the positive	
	aspect of the principle requires that we identify what is	
	essential for design (Adams et al. 2014)	
Seminal author(s)	Cherns, 1976; 1987	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	"It is of wide application and implies the minimal critical	
	specification of tasks, the minimal critical allocation of tasks to	
	jobs or of jobs to roles, and the specification of objectives with	
	minimal critical specification of methods for obtaining them"	
	(Cherns, 1976 p. 786)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	"it is a mistake to specify more than is needed because by	
	doing so options are closed that could be kept open" (Cherns,	
	1976, p. 786)	
Aspect(s) of pathology	A lack of consideration of this principle could result in	
	generation of single or narrow view of alternatives. The	
	alternatives can be logged and challenged in the future.	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, *17*(1), 112–123.
- Cherns, A. (1976). The principles of sociotechnical design. *Human Relations*, 29(8), 783–792.
- Cherns, A. (1987). Principles of sociotechnical design revisted. *Human Relations*, 40(3), 153–161.

Principle of multifinality		
Short description	'multifinality'	
Detailed description	"Radically different end states are possible from the same	
_	initial conditions" (Adams et al. 2014, p. 118)	
Seminal author(s)	Buckley, 1967	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	"from a given initial state, [it is possible to] obtain different,	
	and mutually exclusive, objectives (divergence)" (Skyttner,	
	1996, p. 34)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	This principle suggests that complex organizations with similar	
	histories can have outcomes that vary widely. Thus, we can't	
	draw premature conclusions regarding organizations that	
	appear to be operating under similar conditions	
Aspect(s) of pathology	A lack of consideration of this principle could result in drawing	
	incorrect assumptions, conclusions, and taking ill-advised	
	actions based on past or current experiences in regards to	
	complex systems	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Buckley, W. (1967). Sociology and modern systems theory. Englewood Cliffs, NJ: Prentice-Hall.
- Skyttner, L. (1996). *General systems theory: An introduction*. New York: NY: Macmillan Press.
| Principle of Pareto | |
|------------------------|---|
| Short description | 'Pareto' |
| Detailed description | In any large complex system, eighty percent of the outputs or
objectives will be achieved (produced) by only twenty percent
of the system means (Adams et al. 2014) |
| Seminal author(s) | Pareto, 1897 |
| Inclusion criteria | This principle can be used in understanding and development of complex systems |
| Exclusion criterion | This principle would not be included if it were not used to describe complex systems |
| Typical exemplars | "In round terms, this so-called law usually works – which is
why people noticed itEighty percent of the shares are held by
twenty percent of the shareholdersEighty percent of
production goes to twenty percent of the orders" (Beer, 1979,
p. 15) |
| Atypical exemplars | Not needed |
| 'close' but 'no' | Not needed |
| Relevant note | This principle suggest that "strategies to shift the point of inflection in the curve [80-20 percent curve] to be overall more profitable, must not interfere with the organization's ability to flexibly respond to its environment or they will make the situation worse" (Clemson, 1984, p. 206) |
| Aspect(s) of pathology | A lack of consideration of this principle could result in
'squeezing' the system too much and lead to its eventual
system demise |

Additional notes:

Eighty percent of the objectives are achieved with twenty percent of the means (Pareto, 1897)

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Beer, S. (1979). The heart of the enterprise. New York, NY: John Wiley & Sons.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.
- Pareto, V. (1897). Cours d'économie politique professé à l'Université de Lausanne. Luzerne: University of Luzerne. Retrieved from http://ann.sagepub.com/content/9/3/128.full.pdf+html

Theorem of purposive behaviorism	
Short description	'purposive behaviorism'
Detailed description	"Purposeful behavior is meant to denote that the act or
	behavior may be interpreted as directed to the attainment of a
	goal – i.e., to a final condition in which the behaving object
	reaches a definite correlation in time or in space with respect to
	another object or event" (Adams et al. 2014, p. 118)
Seminal author(s)	Rosenblueth, Wiener, & Bigelow, 1943
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"Let me begin by presenting diagrams for a couple of typical
	mazes, an alley maze and an elevated maze. In the typical
	experiment a hungry rat is put at the entrance of the maze
	(alley or elevated), and wanders about through the various true
	path segments and blind alleys until he finally comes to the
	food box and eats. This is repeated (again in the typical
	experiment) one trial every 24 hours and the animal tends to
	make fewer and fewer errors (that is, blind-alley entrances) and
	to take less and less time between start and goal-box until
	finally he is entering no blinds at all and running in a very few
	seconds from start to goal. The results are usually presented in
	the form of average curves of blind-entrances, or of seconds
	from start to finish, for groups of rats" (Tolman, 1948, p. 189)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	There are complex cognitive mechanisms and purposes that
	guide behavior of complex systems
Aspect(s) of pathology	A lack of consideration of this theorem could result in misuse
	of scarce resources, lack of emphasis on mechanisms and
	unexplored purposes that are guiding complex system
	behaviors

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. *Philosophy of Science*, 10(1), 18–24.
- Tolman, E. C. (1948). Cognitive maps in rats and men. *Psychological Review*, 55(4), 189–208.

Theorem of recursive system		
Short description	'recursion'	
Detailed description	if a viable system contains a viable system, then the	
	organizational structure must be recursive; in a recursive	
	organizational structure, any viable system contains, and is	
	contained in, a viable system (Adams et al. 2014)	
Seminal author(s)	Beer, 1979	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	"Every system of whatever size must maintain its own structure	
	and must deal with a dynamic environment, i.e., the system	
	must strike a proper balance between stability and change"	
	(Clemson, 1984, p. 222)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	"Higher level managers who have been drawn into the details	
	of their sub-units' operations will have no time for planning,	
	exploring the environment or generally palling for the future"	
	(Clemson, 1984, p. 223)	
Aspect(s) of pathology	A lack of consideration of this principle could result in "a top	
	management that experiences a loss of cohesion and integration	
	and feels that the organization is too decentralized" [and] unit	
	managers that experience a loss of independence and autonomy	
	and feel the organization is too centralized" (Clemson, 1984, p.	
	222)	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Beer, S. (1979). The heart of the enterprise. New York, NY: John Wiley & Sons.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.

Theory of redundancy	
Short description	'redundancy'
Detailed description	"Means of increasing safety and reliability [and stability] of
	systems by providing superfluous or excess [critical]
	resources" (Adams et al. 2014, p. 118)
Seminal author(s)	Pahl et al., 2011
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	The unpredictability in complex system elements of safety,
	reliability, and stability require provision of excess critical
	resource in form of backup or fail-safe
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	"Stability relative to overall objectives may require
	considerable change in short term objectives, in ways of
	operating, and in technology utilized. These changes all require
	extra resources" (Clemson, 1984, p. 212)
Aspect(s) of pathology	Complex systems operating environmental conditions might
	offer different opportunities. However, a lack of consideration
	of this theory could result in having no extra capabilities (in
	terms of resources) needed to explore and seize new
	opportunities

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.
- Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2011). Engineering design: A systematic approach. (K. Wallace & L. T. M. Blessing, Trans., K. Wallace & L. T. M. Blessing, Eds.) (3rd ed.). Berlin: Germany: Springer.

Principle of redundancy of potential command		
Short description	'redundancy of potential command'	
Detailed description	"Effective action is achieved by an adequate concatenation of	
	information. In other words, power resides where information	
	resides" (Adams et al. 2014, p. 118)	
Seminal author(s)	McCulloch, 1965	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	"A management that encourages utilization of redundancy of	
	potential command will increase its speed of response; ability	
	to detect novel events, information, trends, threats, and	
	opportunities; creativity of decision-making; and	
	comprehensiveness of decision-making" (Clemson, 1984, p.	
	212-213)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	"Information confers power" (Clemson, 1984, p. 212)	
Aspect(s) of pathology	Failure to consideration of this principle "robs the organization	
	of creative solution; ability to recognize crucial facts, trends,	
	and events; and , in general, a large fraction of its overall	
	decision making capability" (Clemson, 1984, p. 212)	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, *17*(1), 112–123.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.

McCulloch, W. S. (1965). Embodiments of mind. Cambridge, MA: MIT Press.

Principle of relaxation	Principle of relaxation time	
Short description	'relaxation time'	
Detailed description	"Stability near an equilibrium state, where resistance to	
	disturbances and speed of return to the equilibrium are used to	
	measure the property. The system's equilibrium state is shorter	
	than the mean time between disturbances" (Adams et al. 2014,	
	p. 118)	
Seminal author(s)	Holling, 1996; Iberal, 1972	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	"It is a characteristic of our society that its institutionshave a	
	longer relaxation time [recovery time] on average than the	
	mean time interval between massive external perturbations"	
	(Beer, 1978, p. 404)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	"If too many pebbles are thrown very rapidly, the pond surface	
	will appear chaotic and will have no discernible pattern of	
	expanding circular ripples – the systems (sic) ability to respond	
	is destroyed by a too rapid series of disturbances" (Clemson,	
	1984, p. 213)	
Aspect(s) of pathology	A lack of consideration of this principle could result in taking	
	on too many changes at one time. "Too many changes at the	
	same time can and often do destroy organizations" (Clemson,	
	1984, p. 213)	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Beer, S. (1978). Platform for change. Chichester: UK: John Wiley.
- Clemson, B. (1984). *Cybernetics: A new management tool.* Tunbridge Wells, Kent: UK: Abacus Press.
- Holling, C. S. (1996). Engineering resilience versus ecological resilience. In P. Schulze (Ed.), *Engineering within ecological constraints* (pp. 31–43). Washington, DC: National Academies Press.
- Iberal, A. (1972). Towards a general science of viable systems. New York: McGraw-Hill.

Law of requisite hierar	Law of requisite hierarchy	
Short description	'requisite hierarchy'	
Detailed description	"The weaker in average are the regulatory abilities and the	
	larger the uncertainties of available regulators, the more	
	hierarchy is needed in the organization of regulation and	
	control to attain the same result, if possible at all" (Adams et al.	
	2014, p. 118)	
Seminal author(s)	Aulin-Ahmavaara, 1979	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	In other words, "the lack of regulatory ability can be	
	compensated to a certain extent by greater hierarchy in	
	organization" (Aulin, 1982, p. 115)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	This law suggests that if a regulatory system lacks ability to	
	control uncertainties (internal or external), then the higher	
	hierarchy must be in control of those uncertainties	
Aspect(s) of pathology	A lack of consideration of this principle could result in dealing	
	with uncertainties that are clearly beyond the level of the	
	current level of control	

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Aulin, A. (1982). The cybernetic laws of social progress: Toward a critical social philosophy of Marxism (1 edition.). New York: NY: Pergamon Press.
- Aulin-Ahmavaara, A. Y. (1979). The law of requisite hierarchy. *Kybernetes*, 8(4), 259–266.

Law of requisite parsim	Law of requisite parsimony		
Short description	'requisite parsimony'		
Detailed description	"Human short-term memory [brain activity] is incapable of		
	recalling more than seven plus or minus two items" (Adams et		
	al. 2014, p. 118)		
Seminal author(s)	Miller, 1956; Simon, 1974		
Inclusion criteria	This principle can be used in understanding and development		
	of complex systems		
Exclusion criterion	This principle would not be included if it were not used to		
	describe complex systems		
Typical exemplars	"There is a clear and definite limit to the accuracy with which		
	we can identify absolutely the magnitude of a unidimensional		
	stimulusand I maintain that for unidimensional judgments		
	this span is usually somewhere in the neighborhood of seven"		
	(Miller, 1956, p. 90)		
Atypical exemplars	Not needed		
'close' but 'no'	Not needed		
Relevant note	In dealing with complex systems, the human mind can only		
	deal with seven items – a number that is reached with three		
	items and there points of intersection – plus or minus two		
Aspect(s) of pathology	A lack of consideration of this principle could result in taking		
	on too much items or actions in the organization. "Attempts to		
	go beyond this scope of reasoning are met with physiological		
	and psychological Limits that prelude sound reasoning"		
	(Warfield, 1999, p. 25). Moreover, "If the law of requisite		
	parsimony is being unknowingly violated, one would expect		
	inal the impact would be revealed in the failure of large		
	around the world" (Warfield 1005 n 126)		
	parsimony is being unknowingly violated, one would expect that the impact would be revealed in the failure of large systems design. This is precisely what is being observed all around the world" (Warfield, 1995, p. 126)		

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. *Psychological Review*, 63(2), 81–97.
- Simon, H. A. (1974). How big is a chunk? Science, 183(4124), 482-488.
- Warfield, J. N. (1995). Spreadthink: Explaining ineffective groups. Systems Research, 12(1), 5–14.
- Warfield, J. N. (1999). Twenty laws of complexity: Science applicable in organizations. *Systems Research and Behavioral Science*, *16*(1), 3–40.

Law of requisite saliency	
Short description	'requisite saliency'
Detailed description	"The factors that will be considered in a system design are
	seldom of equal importance. Instead, there is an underlying
	logic awaiting discovery in each system design that will reveal
	the saliency of these factors" (Adams et al. 2014, p. 118)
Seminal author(s)	Boulding, 1966
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"The situational factors that require consideration in
	developing a design Target and introducing it in a Design
	Situation are seldom of equal saliency. Instead there is an
	underlying logic awaiting discovery in each Design Situation
	that will reveal the relative saliency of these factors" (Warfield,
	1999, p. 34)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	"Characteristically individuals who become involved in the
	design process exhibit great diversity in their assessment of
	relative saliencyThis diversity, if uninfluenced by thorough
	exploration of the Design Situation, will support unfocused
	dialog, unjustified decisions, and arbitrary design outcomes not
	likely to be understood or even actionable" (Warfield, 1999, p.
	34)
Aspect(s) of pathology	A lack of consideration of this law could contribute to poor
	intellectual productivity which is attributed to "spurious
	saliency - emphasizing the wrong things, out of proportion to
	what they deserve, unproductive emulation - behaving like
	those who help create rather than resolve problems, and
	cultural lag - not using established knowledge with dispatch"
	(Warfield, 1999, p. 34)

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, *17*(1), 112–123.
- Boulding, K. E. (1966). *The impact of social sciences*. New Brunswick, NJ: Rutgers University Press.
- Warfield, J. N. (1999). Twenty laws of complexity: Science applicable in organizations. *Systems Research and Behavioral Science*, *16*(1), 3–40.

Law of requisite variety	/
Short description	'requisite variety'
Detailed description	"Control can be obtained only if the variety of the controller is
	at least as great at the variety of the situation to be controlled"
	(Adams et al. 2014, p. 118)
Seminal author(s)	Ashby, 1956
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"To put it more picturesquely: only variety in R [system] can
	force down the variety due to D [another system]; only variety
	can destroy variety" (Ashby, 1956, p. 207)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	"The control achieved by a given regulatory sub-system over a
	given system is limited by 1) the variety of the regulator, and 2)
	the channel capacity between the regulator and the system"
	(Clemson, 1984, p. 216)
Aspect(s) of pathology	Failure to consideration of this law could result in insufficient
	development dedicated to system for regulating variety and
	thus system might have no capability to adapt or grow
	(Clemson, 1984)

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Ashby, W. R. (1956). An introduction to cybernetics. London: Chapman & Hall.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.

Principle of satisficing	
Short description	'satisficing'
Detailed description	"The decision-making process whereby one chooses an option
_	that is, while perhaps not the best, good enough" (Adams et al.
	2014, p. 118)
Seminal author(s)	Simon, 1955; 1956
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"attaining a certain minimum quality level for the decision,
	enough to solve the problem but not necessarily
	morebecause the first acceptable solution is considered to be
	as good as all the others. To satisfy is to use the principle of
	least effort" (Skyttner, 2005, p. 395)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	"The main reason why decision-making in most cases appears
	to be satisficing is the following limiting
	circumstancesLimited timeLimited informationLimited
	information-processing capability" (Skyttner, 2005, p. 396)
Aspect(s) of pathology	A lack of consideration of this principle in complex systems
	operating under uncertainty conditions could result in misuse
	of scarce resources

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Simon, H. A. (1955). A behavioral model of rational choice. *The Quarterly Journal of Economics*, 69(1), 99–118.
- Simon, H. A. (1956). Rational choice and the structure of the environment. *Psychological Review*, 63(2), 129–138.
- Skyttner, L. (2005). General systems theory: Problems, perspectives, practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.

Principle of self-organized	Principle of self-organization	
Short description	'self-organization`	
Detailed description	"The spontaneous emergence of order out of the local	
	interactions between initially independent components	
	[systems, elements or parts]" (Adams et al. 2014, p. 118)	
Seminal author(s)	Ashby, 1947	
Inclusion criteria	This principle can be used in understanding and development	
	of complex systems	
Exclusion criterion	This principle would not be included if it were not used to	
	describe complex systems	
Typical exemplars	"Complex systems organize themselves and their characteristic	
	structural and behavioural patterns are mainly a result of	
	interaction between subsystems" (Skyttner, 2005, p. 101)	
Atypical exemplars	Not needed	
'close' but 'no'	Not needed	
Relevant note	"Most of the structural and behavioral patterns in an	
	organization are a result of interactions among the parts of the	
	organization; they are primarily the result of the management's	
	deliberate decisions" (Clemson, 1984, p. 2019)	
Aspect(s) of pathology	A lack of consideration of this principle could result in forcing	
	a new culture and identity of the system which is most likely to	
	face strong opposition	

2

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, 17(1), 112–123.
- Ashby, W. R. (1947). Principles of the self-organizing dynamic system. *The Journal of General Psychology*, 37(2), 125–128.
- Clemson, B. (1984). *Cybernetics: A new management tool.* Tunbridge Wells, Kent: UK: Abacus Press.
- Skyttner, L. (2005). General systems theory: Problems, perspectives. practice (2nd ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.

Principle of sub-optimi	zation
Short description	'sub-optimization'
Detailed description	"If each subsystem, regarded separately, is made to operate
	with maximum efficiency, the system as a whole will not
	operate with utmost efficiency" (Adams et al. 2014, p. 118)
Seminal author(s)	Hitch, 1953
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"It is silly to look for an optimal solution to a mess. It is just as
	silly to look for an optimal plan. Rather we should be trying to
	design and create a process that will enable the system
	involved to make as rapid progress as possible towards its
	ideals, and to do so in a way which brings immediate
	satisfaction and which inspires the system to continuous pursuit
	of its ideals" (Ackoff, 1977, p. 5)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	This principle suggests that optimizing each subsystem
	independently will not in general lead to a system optimum, or
	more strongly, improvement of a particular subsystem may
	actually worsen the overall system (Heylighen, 1992)
Aspect(s) of pathology	A lack of consideration of this principle could lead to pursuit of
	solutions that will no merit on system and would act to limit
	overall system performance

- Ackoff, R. L. (1977). Optimization + objectivity = optout. European Journal of Operational Research, l(1), 1–7.
- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*. 17(1), 112–123.
- Heylighen, F. (1992). Evolution, selfishness and cooperation. *Journal of Ideas*, 2(4), 70–76.
- Hitch, C. (1953). Sub-optimization in operations problems. *Operations Research*, 1(3), 87–99.

Principle of viability	
Short description	'viability'
Detailed description	"A function of balance must be maintained along two
	dimensions: (1) autonomy of subsystem versus integration and
	(2) stability versus adaptation" (Adams et al. 2014, p. 118)
Seminal author(s)	Beer, 1979
Inclusion criteria	This principle can be used in understanding and development
	of complex systems
Exclusion criterion	This principle would not be included if it were not used to
	describe complex systems
Typical exemplars	"conditions that are necessary and sufficient [for complex
	system survival]" (Beer, 1979, p. 115)
Atypical exemplars	Not needed
'close' but 'no'	Not needed
Relevant note	"Organizational effectiveness is a function of the balance
	maintained along two dimensionsautonomy of organizational
	units verses integration of the business as a whole [and]
	stability of operations versus adaptation to changing
	conditions" (Clemson, 1984, p. 221)
Aspect(s) of pathology	A lack of consideration of this principle could result in too
	much of autonomy; too much integration; too much stability;
	too rapid pace of adaptability – none of which support
	existence of a complex system

- Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems theory as the foundation for understanding systems. *Systems Engineering*, *17*(1), 112–123.
- Beer, S. (1979). The heart of the enterprise. New York, NY: John Wiley & Sons.
- Clemson, B. (1984). *Cybernetics: A new management tool*. Tunbridge Wells, Kent: UK: Abacus Press.

APPENDIX B: CATEGORIES FOR SYSTEMS THEORY-BASED PATHOLOGIES

This appendix provides further elaboration on the categories of systems theorybased pathologies. A theme that emerged out of open coding activity of GTM was that conditions, factors, or patterns that might act to limit system performance might be attributed to the failure to adhere to concepts of systems theory (Beer, 1984; Clemson, 1984: Katina, 2015a; Ríos, 2012). Consequently, when one fails to adhere to concepts of systems theory, there is an increased likelihood that the system in question will not achieve its expected performance (Beer, 1984; Keating & Katina, 2012). These ideas were first illustrated in Appendix A, where the researcher developed initial insights into pathologies. Once the Grounded Theory Method was selected as a viable approach for this research, each systems theory concept was (re)analyzed using QSR International's NVivo 10 software package --- initially, each of the 30 concepts of systems theory from Adams et al. (2014) were recorded as 'codes' in a Microsoft Office's Word 2013 document and synthetized for pathological meaning. The dataset (i.e., text units) related to the concept of systems theory were imported into NVivo 10 as either 'memos.' "significant word or phrase you applied to a datum" (Saldaña, 2013, p. 42). Then, the researcher, thinking critically about the meaning of each concept and reflecting on the purpose of the research as well as challenging own assumptions (Mason, 2002).

developed pathological meanings for the various concepts of systems theory.

Consequently, a database of 362 'codes' and 83 'categories' of systems theory-based pathologies was developed from the 30 propositions and 53 other concepts of systems theory. These pathologies are presented in this appendix.

Table 52:	A Comprehensive Listing of C	odes and Categories S	upporting Systems I heory-Based Pathologies
Category	Codes	Supporting	Statement of a systems theory-based pathology
		sources	
Pathology of	- need for more than one	Clemson, 1984	Pathology of complementarity - a situation in which
complementarity	perspective		an organization ignores other perspectives/models that
_	 revealing truths 		are not entirely compatible with the established-
	- anticipating utility of		predominate perspectives including missions, goals
	perspectives		and objectives. An organization in this case
	- causes massive		mistakenly assumes that there is only one 'right'
	confusion		perspective (Bohr. 1928; Mehra, 1987). Thus,
	 requiring both parties 	Krippendorff, 1986	different truths contained in different perspectives are
	- circular definitions of		shunned. Murdoch and Murdoch (1989) suggest that
	each other		this pathology is more likely related to a management
	- classical concepts have a	Murdoch and	style that assumes that the organization operates under
	limited applicability	Murdoch, 1989	'ideal' conditions. Moreover, too many perspectives,
	- there must be well-		especially the ones not being made explicit and
	defined elements		understood, could cause "mass confusion" (Clemson,
	- perspective might not be	Skyttner, 2005	1984, p. 207) in an organization. This pathology is
	compatible		expected in an operation landscape characterized as
			ambiguous, complex, interdependent, and uncertain

Pathology of	- diminishing marginal	Encyclopedia	Pathology of diminishing returns - a condition in
diminishing	productivity	Britannica, 2013	which management mistakenly assumes that
returns	- fixed variables		increasing number of workforce increases the
	 yielding becomes 		productivity of the organization as a whole without
	progressively smaller		expanding the landscape of operations. In a farming
	- improving methods and		example, if a farmer with a specific acreage and a
	tools		specific number of workers decides to increase the
	 corresponding change in 		number of workers; overall productivity might not
	other variables (e.g.,		increase (Krippendorff, 1986; Samuelson &
	advance in technology)		Nordhaus, 2001; Smith, 1904). In fact, the
	- raising subsystem well-		Encyclopedia Britannica, suggests that the output of
	being		each worker is reduced and thus affecting the whole
	- additional units	Krippendorff, 1986	organization. There must be a corresponding change
	- fixed amounts of the		in other variables such as advanced technology and
	other inputs		investing in better skilled-workers
	- smaller increments		

Pathology of	- increasing hierarchy (of a Adams et al., 2014	Pathology of requisite hierarchy - a situation in
requisite	system		which the regulatory body of an organization is not
hierarchy	 increasing regulatory 	Aulin, 1982	well-designed to match the variety of the
	ability		organization. This pathology is evident in situations in
	- matching the variety of	of Klir, 1991	which the variety of the system is higher than what
	the system being		the regulatory body can handle (Aulin, 1982;
	regulated		Aulin-Ahmavaara, 1979). The structure of the
	- necessary for surviva	lof	organization might change (i.e., horizontal or
	the system		vertically) without consideration of a matching
	- upper limit to the of e	ach	multilevel regulatory body (Ríos, 2012). In this
	hierarchy		situation, the current regulatory body might reach its
	- need for more hierarc	hy Skyttner, 2005	limit, if it exists at all. A well-designed regulatory
			body is "necessary for effective regulation and
			survival of the society" (Klir, 1991, p. 211)

Pathology of	- good regulars represent	Conant and Ashby.	Pathology of requisite knowledge - a situation in
requisite	the good models of the	1970	which an organization simply has a bad regulator. A
knowledge	system		bad regular for an organization is simply a regulator
	- needs for regular to learn		that is not well-informed of the relevant facts that
	for the survival of the		enable viability. To Schwaninger (2009), a regulator
	system		can only regulate (i.e., control) a system better if a
	 regulator must know 	Heylighen, 1992	regular understands the system well. This is
	actions to take		something that is provided by a model that has
	- selects the right responds		requisite knowledge. Control and regulation can only
	to perturbations		take place if the model of the organization has a well-
	- might involve a one-to-		articulated knowledge base and the ability to select
	one mapping		the right actions against perturbations. In line with
	- knowledge is embedded		Heylighen's (1992), an organization in requisite
	in connections		knowledge pathology might blindly take actions
	 bad regulators try 		using, for example, trial and error approaches in hopes
	blindly and eventually		of eventually solving organizational issues. An
	solve the problem		organization under this pathology will eventually
			"dissipate" (Schwaninger, 2009, p. 20) since it is not
			operating under the guidance of the relevant facts

Pathology of	- at	ssuming unreasonable	Adams et al., 2014	Pathology of requisite parsimony - a condition in
requisite	ũ	umber activities		which a system fails because the human element of
parsimony	- di	iminishing accuracy	Miller, 1956	the organization has assumed more activities than
	aı	nd might result in bad		what can reasonably be handled. The number is
	.n	Idgment		limited to seven plus or minus two (Miller, 1956).
	- a	s low as three elements	Skyttner, 2005	This number can be as low as having three activities
	aı	nd four interacting		(i.e., functions, missions, and objectives) and four
	ర	ombinations		interacting combinations of those activities (Skyttner,
	- li	mited sound reasoning	Warfield, 1995	2005). Any attempts to go beyond this scope "prelude
	- S)	ystem design failures		sound reasoning" (Warfield, 1999, p. 25) and might
	, ,	1		diminish accuracy and is a source of bad judgment
				(Miller, 1956)

which organization productivity is reduced due having likelihood, the workforce of a complex organization is articulate the relative importance of different elements circumstances create the right conditions for failure to to Warfield (1999), this pathology is related to having emphasizing the wrong elements, out of proportion to missions and objectives (Boulding, 1966). According those who help create rather than resolve problems) and having a cultural lag (i.e., not operating using a achieve the desired results (Warfield, 1999). These members of the organization might be behaving as develop unfocused dialog, incorrect decisions, and what they deserve), unproductive emulation (i.e., leadership or individuals and actions that cannot of the organization, leading to "poor intellectual Pathology of requisite saliency - a condition in common established knowledge base). With all diversified. Left unchecked, the workforce can arbitrary design not likely to be understood by undifferentiated importance of organizational spurious saliency (i.e., the organization is productivity" (Warfield, 1999, p. 34) Adams et al., 2014 Warfield, 1999 team diversity negatively intellectual productivity unproductive emulation designs are not of equal influencing the design all factors of system and understanding spurious saliency implications on having major cultural lag importance ī . ī requisite saliency Pathology of

Pathology of	- only variety destroy can	Ashby, 1956	Pathology of requisite variety - a situation in which
requisite variety	variety		the regulatory entity of an organization has
	 the regulating subsystem 	Clemson, 1984	insufficient capacity to address the variety of the
	is limited by the capacity		system. In this situation, the regulatory entity of the
	of its regular and		organization, according to Clemson (1984), might not
	channel capacity linking		be designed to handle organization's variety or the
	the regulator and system		channel linking the regulator and system might be
	- this includes		limited. The regulatory entity including its
	management and its		management team and the procedures are never 100%
	procedures		accurate, competent, knowledgeable, and capable.
	- reducing variety of		However, the organization should have the ability to
	subsystems is directly		(re)design the regulatory entity (Clemson, 1984).
	related to variety of the		Organizations in this situation, might still manage to
	system		deal with variety at high costs using duplicative and
	- the regulator is never		guesstimating measures. In either situation, the
	100% efficient		organization is being operated without sufficient
	 some systems can be 		control since "Control can be obtained only if the
	operated regulatory		variety of the controller [regulator] is at least as great
	subsystems lacking		as the variety of the situation to be controlled"
	variety; guesstimating		(Skyttner, 2005, p. 100)
	and costs are involved		

Pathology of	- maintaining essential	Ashby, 1960	Pathology of adaptation - a situation in which
adaptation	variables		neither the internal structures of a system are able to
	 responding to external 		change in response to external disturbances, nor
	disturbances using		system being able to lessen environmental changes
	internal mechanisms		affecting it. As noted by Ashby (1960), a system's
	 some systems do not 		ability to survive is highly dependent on being able to
	have this ability and		change in response to change and/or changing the
	operate efficiently		environment (Krippendorff, 1986). More specifically,
	- they stay to close to the		Hitchins (1992) notes that a system's rate of
	fire or too far from the		adaptation must equal or exceed the mean rate of
	fire		change of its environment. An organization in this
•	- system rate of change of	Hitchins, 1992	situation might find that its essential variables are
	adaptation must match		overrun by the environment disturbances. Failure to
	that of the environment		act "homeostatically" (Ashby, 1960, p. 62) in the
	- the system remains	Krippendorff, 1986	presence of environmental disturbances is indicative
	stable in the face of		of this pathology
	change		
	- the system changes its		
	internal structure		
	 the system changes the 		
	external environment		

Pathology of autonomy - a situation in which a	subsystem does not have the ability to act as an	independent agent without the constraints of a higher	system. Autonomy in this case might include being	able to make decisions and taking actions (Bateson,	1980; Chirkov, Ryan, & Sheldon, 2011). Autonomy is	beneficial for the subsystem(s) and the system itself.	For instance, experts suggest that a worker who is free	to make choices in the workplace and accountable for	his or her decisions tends to be happier and more	productive (Chirkov et al., 2011). In essence, a	subsystem operating an autonomous pathological	condition might seek guidance in all its actions and	decisions. The question is not whether autonomy is	good or bad for the subsystem and the system	(Bateson, 1980); rather, the issue at play is	recognizing situations in which a subsystem can act as	an independent agent within the confines of a larger-	networked system (Varela, 1979). An entity without	autonomy, constrains the organization
Bateson, 1980							Varela, 1979												
- being able to act	independently without	constraint of higher a	system	 it can be disputed as to 	whether autonomy is	good or bad	- autonomous system is	organizationally closed	as a network	- even systems in a	network depend on each	other							
Pathology of	autonomy						L												

Pathology of	- the needs for	Keating, 2009	Pathology of balance of tensions - a situation in
balance of	metasystem structure		which the system lacks a governing structure that can
tensions	- the metasystem relieves		relive tension among different subsystems/elements.
	tensions		Specifically, Keating (2009) suggests that a
	- the metasystem helps in		metasystem structure can be used to balance tensions
	preparing for emerging		along the dimensions of (1) independence of
	issues		subsystems and missions of the whole, (2) structured
	- a poor performing		design and self-organization, and (3) maintaining
	metasystem can worsen		stability and allowing for change commensurate with
	the tensions		unpredictability in the system/environment. This
	- tensions in systems will	Keating, 2010	balance is necessary for the viability of the system
	always exists and they		(Keating et al., 2010; Keating, 2010). In fact, these
	must be dealt with		tensions might "result in decreases performance, and
	- tensions reduce system		although the system may maintain viability (continued
	performance		existence), it may not be at the levels of performance
	- The metasystem structure		desired" (Keating, 2010, p. 6). An organization
	can be used maintain a		operating under this pathological condition might lack
	desired level of		a governing structure or have a governing structure
	performance		that is inadequate. Under these conditions, the system
	- balancing tensions	Keating et al., 2010	becomes incapable of anticipating and preparing for
			emerging trends and patterns affecting the system
			(Keating, 2009)

Pathology of	- different configurations	Bateson, 1972	Pathology of basins of stability - a condition in
basins of stability	have different		which system's stability is reduced because of the
	consequences for a		inability to recognize different system configurations
	system		and their periods of transitions. Hester and Adams
	- a system seeks to use	Clemson, 1984	(2014) suggest that complex systems have three
	lowest energy		configurations: order, chaos, and the transition phase.
	- changing from one		Each configuration requires different resources and
	configuration requires		produces different consequences (Bateson, 1972).
	sufficient resources		Regardless of the configuration, it takes effort to
	- once the system starts to		move a system from one state to another and once a
	move, it continues until		system settles in a specific basin, significant efforts
	affected		might be required to move it to a more preferred basin
	- systems can be placed in		(Clemson, 1984). An organization suffering from this
	a number of basins		pathology might not recognize the need to move from
	- the basins are not a	Hester and Adams,	one basin to another or the scope of efforts required to
	permanent state	2014	move it from one basin to another (Nicolis &
	- it can be difficult to		Prigogine, 1975). While the organization is in the
	distinguish transition		transition period, it might lack the ability to brake and
	phases		thus keep gravitating towards the least energy state
	 the periods of transition 	Nicolis and	(Clemson, 1984). Since it is difficult to initiate a
	are tumultuous	Prigogine, 1975	move, the current organization basin might be viewed
		8	as if it were in a permanent state. An example of
			basins of stability pathological condition is
			"investment in one type of building (or in one
			technology or in one location) puts an organization in
			one basin of stability as compared to other possible
			plants, technologies, or locations" (Clemson, 1984, p.
			221). These actions reduce systems stability or the
			ability to respond to changes

Pathology of	- enhancing stability	Skyttner, 2005	Pathology of buffering - a condition in which a
buffering	through surplus of		system lacks surplus resources. In essence, the system
	resources		is being operated without slack (Skyttner, 2005). In
	- it provides the system	Wildavsky, 1988	this case, slack is reverse and might be defined as
	some slack		"capacity in excess of immediate needs" (Wildavsky,
	- the reserves are used in		1988, p. 116). A certain amount of reserves enhances
	case of unexpected		system stability since it is only used in case of
	increased demand		unexpected increase in demand (Wildavsky, 1988).
	- reserves can decrease		Unlike the pathology of redundancy of resources (i.e.,
	efficiency and lead to		not having the same kind resource in case of failure),
	failure		this pathology simply addresses a need for 'slack' in
			case of unexpected increase in demand while being
			aware that unused surplus could actually harm
			efficiency of the system. An organization in this
			condition might have zero reserves or too many
			reserves - neither of which is desirable for the system

Ľ,
Ę
0
ં
2
S
ခ
Ð
ື
E

ology of ular causality	 the effects become causes with an endless number of possibilities shifting from causality focusing of processes and emergent structures and emergent structures and patterns of events spiral process of causality fundamental to human thinking related to how we defines ourselves as members of the society this is a non-linear process with implications of negative 	Adams et al., 2014 Bale, 1995 Korzybski, 1994	Pathology of circular causality – a situation in which a traditional (linear) causality model of thinking is applied without recognizing the nature of intricate interactions in subsystems of a complex system. In the traditional model of thinking, an event A is directly related to B (i.e., causes) and in turn B causes C. However, C might not be considered as a contributor to the formation of A along with a multitude of other factors (Adams et al., 2014; Keesing, 1981). Clemson (1984) notes that it is in fact possible to have a wide range of conditions leading to the same results as in <i>positive feedback</i> . As pathology, this situation is evidenced when an organization fails to focus on processes and the emerging patterns of events in systems. Emphasis might be placed on finding single causes. However, since social events are rarely uni-directional, as suppested by
	 Implications of negative feedback the process of linking more than one event A causes B and B cause C without recognizing that C could as well contribute to the formation of A social events are never uni-causal; they are more multi-causal 	Krippendorff, 1986	Krippendorff (1986, p. 9), there is a need to focus on multi-casual of factors for complex systems. This is supported by Korzybski (1994) who suggested that its best view oneself as a member of a society who could be affected by many factors in a spiral process of causality. Thus, it is a fundamental error to operate a complex systems using a linear causality model of thinking since this focus could limit exploration of other relevant factors affecting system performance

Pathology of	- balancing te	ensions	Keating, 2010	Pathology of consequent production - a condition in
consequent	through des	ign		which there is failure to focus on the underlying
production	modification	u		structure of the system; rather focus is placed on the
_	- looking at th	he system	Keating et al., 2010	outcome/outputs themselves. Keating et al. (2010)
	generating t	undesired		notes that when a system produces undesirable
	behavior			outputs, the focus should not be on the output. The
_	- a system cat	n only	Keating et al.,	focus should be on attempting to (re)calibrate the
	produce what	at it produces	2003a	structures of the system in order to produce an
	- adjusting the	e structure		improved product (Keating, 2010). A system,
	and not the	outcomes		according to Keating et al. (2003a) can only provide
				what it can produce. It is an error to assume
				improvement without improving the system itself. The
				pathology of consequent production might be
				exhibited in systems that continue to produce 'wrong'
				products despite making changes

Pathology of	- configuration becomes	Bale, 1995	Pathology of cybernetic stability - a condition in
cybernetic	more intricately		which a system lacks a sufficient number of external
stability	organized		connections. This is a like a freestanding structure. It
	- increased numbers of		has been suggested that an increased the number of
	variables make the		connections makes a system more stable and easily
	system more sensitive		adaptive (Bale, 1995). A system operating without a
	 they also make the 		without a sufficient number of connections is unable
	system more effective in		broaden its sense of self and responsibility and might
	adapting		become unconscious of needs of other systems (Macy,
	- the system increases its		1991). Bale's (1995) work also suggests that the
	ability to remain viable		exchange of information among interacting systems is
	- enhanced control for		relevant to effective control, refrain, and governance
	system governance		of the system of interest. Still, too much exposure to
	- becomes more conscious	Macy, 1991	other systems can make the system too "intricately
	of interactions and needs		organized and more intimately interrelated" which
	of others		might make the system "more sensitive and
	- broadening of sense of		responsive to change, and thereby less stable" (Bale,
	self and responsibility		1995, p. 194). An organization in this situation might
	including respect		act as though it was a self-sustaining system
	- the very survival of		
	society and ecosystems		
	requires a shift in		
	identification		

Pathology of	- not aware of all states of	Beer, 1979	Pathology of darkness - a situation in which a system
darkness	subsystems		is operated upon under the assumption that all its
	- a subsystem is only	Cilliers, 1998	relevant aspects including behaviors are known. At
	aware of the local events		the very best, one might be able to understand
	- can still be managed	Clemson, 1984	behaviors of local systems as noted by Cilliers (1998).
	effectively		However, and as supported by systems literature, no
	- essential to holistically		system or the details of its components and
	the system we are		interactions can ever be completely known (Beer,
	responsible for		1979; Clemson, 1984: Skyttner, 1996). Thus, when
	- the more we more from		the principle of darkness is violated, one might strive
	the local system, the		to know all aspects of a complex system, its elements
	more opaque systems		as well as their interactions, which can only lead to
	become		wasting scarce resources. Effective management is
			still possible so long as there is focus only on the
			"crucial aspects of the system and to actually avoid
			knowing about (hopefully) irrelevant details"
			(Clemson, 1984, p. 204). An organization in this
			pathological condition might attempt to make all
			system elements and their interactions as transparent
			as possible

Pathology of dialecticism - a condition in which a	system lacks the ability to detect errors and learn.	More specifically, this condition involves the lack of	means to correct errors through single loop where	reflection is made on what is good/bad about	operations. It also includes double loop learning in	which reflections, for example, on goals, are made	with regards to how they are achieved, modifying the	approach, and or rejecting a goal. An organization in	this pathological condition might have the ability to	reflect on what was learned including	recommendations but still lacks the means to follow-	up and implement the recommendations
Argyris and Schön,	1978; 1996		Boje, 2008									
- correcting errors through	single and double loop	learning	- reviewing as in telling	stories	- self-reflecting							
Pathology of	dialecticism											

Pathology of	- properties attributed to	Checkland, 1993	Pathology of emergence – a condition in which
emergence	the whole		management assumes behaviors of the system whole
	- emerges from	Guckenheimer and	can be directly inferred by the properties of
	interactions	Ottino, 2008	subsystems, independent of subsystem interaction. In
			this case, management fails to recognize that complex
			systems exhibit behaviors beyond those of the
			individual subsystems (Aristotle, 2002;
			Guckenheimer & Ottino, 2008; Heylighen, 1989).
			This principle, when explained in terms of meaning,
			suggests that system wholes "entities exhibit
			properties which are meaningful only when attributed
			to the whole, not its parts" (Checkland, 1993, p. 314).
			Thus, this pathology might be exhibited when a
			system whole is divided into parts in hope of
			understanding it better. As indicated, it would be an
			error to assume that better understanding of the whole
			can be developed from a clear understanding of
			isolated parts

Pathology of environmental-modification - a condition in which a system fails to negotiate its	environment. As indicated by the pathology of	change the environment. The pathology of	environmental-modification places more emphasis on	the efforts undertaken to influence the environment of the system (Douglas & Wildavsky, 1982; Watt &	Craig, 1988; Wildavsky, 1988). More specifically,	this pathology is exhibited by systems that lack the	ability of "negotiating the environment [for example]	(by collusion on practices or by diving market shares)	so as to reduce the extent of fluctuations to which the	unit in question has to respond" (Wildavsky, 1988, p.	116). The line of demarcation separating the system	from its environment plays a key role. It could be too	narrow, broad, or missing (Douglas & Wildavsky,	1982). While environmental-modification capability	is recommended, there is a caveat especially in	monopolistic situations in which monopolies	"strengthen stockholders but not necessarily the	economic system on which these monopolies	ultimately depend" (Wildavsky, 1988, p. 116).	Clearly, these conditions are neither good for the	system nor other systems in the large environment
Watt and Craig, 1988	Wildavsky, 1988																				
- to maintain survival	- negotiating the	- reduces fluctuations	- much depends on the	line of demarcation - can strengthen system of	interest by weaken other	systems															
Pathology of environmental-	modification																				

Pathology of equifinality - a situation in which a	system is operated with a belief that there exists only	one approach/method to achieve a final desired state -] including goals and missions. There might indeed	be one approach, however, the issue at hand is	whether other alternative approaches can be examined	and taken into consideration (Katina et al., 2014a).	Researchers have indicated that it is possible to arrive	at a similar goal and mission while starting out with	different approaches (Cummings & Worley, 2005;	Paritsis, 2000; von Bertalanffy, 1968). More	specifically, von Bertalanffy (1968, p. 40) notes that	"the same final state may be reached from different	initial conditions and in different ways." Thus, an	organization that fails to explore and recognize other	viable alternatives and measures that would still result	in achievement of the same desired mission and	objectives is suffering from pathology of equifinality.	Such an organization becomes closed and	deterministic and lacks proper governing structure to	maximize system survivability chances
Cummings and	Worley, 2005			Paritsis, 2000					von Bertalanffy,	1968										
- achieving similar results	but starting with	different initial	conditions	- applying different	methods to achieve	similar ends	- it maximizes basic	changes for survival	- if the system is closed,	then initial conditions	yield same results	- implications for	governance)						
Pathology of	equifinality																			
,																				
--	--	--	--	---	--	---	---	--	---	--	--	--	---	---	---	---	--	--	--	---------------
Pathology of equivocation - a situation in which	delivering intended signal (i.e., messages) from one	point to the next. In delivering messages (i.e.,	information), the sender may wish to conceal the	meaning (Shannon, 1949) so that only the intended	receiver can decipher and understand its meaning. In a	secret system, the receiver is able to understand the	meaning (Damer, 2000). Thus, communication is still	possible despite the noise - any factor in the process	that works against the predictability of the outcome of	the communication process. However, when the	principle of equivocation is violated, the	communication system might lack the ability to	conceal the information. In fact, a poorly designed	communication channel could increase the noise such	that the receiver is unable to understand the meaning	(Krippendorff, 1986; Shannon, 1949). An	organization experiencing this pathology might	require further clarification, simplification,	generalization or condensation of the signals or	messages sent
Damer, 2000	Krippendorff. 1986	、 			Shannon, 1949															
- knowing meaning at a	 reduction of variety and 	noise/increasing clarity	- equivocation leads to	poor understanding	- the true meaning might	be hidden	- ensuring that despite	noise, communication is	still possible	- the level of equivocation	decreases over time									
Pathology of	equivocation																			

(cont.)
52
Table

Pathology of	- money is highly valued	Beer, 1978	Pathology of eudemony - a situation in which
eudemony	but it only helps in		precedence is placed on the financial profitability of a
	achieving well-being		system above any other measures. This situation
	- money actually		involves ignoring import measures that are desirable
	constraints happiness		in describing overall well-being since that not easily
	- if its unconsidered the	Kant, 1991	quantifiable. Specifically, the literature suggests that
	result could include a		the overall well-being of a system, including people
	quiet death		and the society at large, is related to having a right
	 it involves peoples well- 	Li, 2013	balance in material. technical, physical, social,
	being and being in tune		nutritional, cognitive, spiritual, and environment
	with the universe		(Beer, 1978; Kant, 1991; Li, 2013). Financial
	- it involves having the		profitability (i.e., money) should only be taken as an
	right balance between		enabler for eudemony (Beer, 1978; Li, 2013). When
	several factors beyond		the principle of eudemony is violated, Li (2013)
	financial profitability		suggests that it's indicative of one's lack a sense of
	- unfortunately, western		self, being unbalanced with social surroundings, and
	culture does not place		therefore not in tune with the universe. In this regard,
	emphasis on it		money should be seen as a "constraint" to happiness
	- it involves social		(Beer, 1978, p. 159). Therefore, an organization
	worthiness and money		suffering from this pathology is expected to place
	does not provide the		more emphasis on money. However, placing emphasis
	right measure		on money and attaining it will not necessarily improve
			the quality of life

Pathology of	- attempting to be all	Machol and Miles,	Pathology of events of low probability - a situation
events of low	things to all the people	1973	in which a complex system is expected to
probability	all the time		accommodate all scenarios including those of low
	 including events of low 		probability. More specifically this pathological
	probability		condition indicates that it's an error to attempt to be
	- such a system is too		all things to all people at all times (Machol & Miles,
	complex to be workable		1973). The attempt to account for all possible
	- can be sympathetic but		scenarios in a complex system is too complex to be
	focus on maximizing		workable, could be costly, and could be the basis for
	expected value		jeopardizing the fundamental objectives of the system
	 does not jeopardize 	Machol, Tanner,	(Machol & Miles, 1973; Machol et al., 1965).
	fundamental objectives	and Alexander,	Therefore, an organization under the pathology of
	to accommodate events	1965	events of low probability, might attempt to serve all
	of extremely low		subsystems and entities (including people) without
	probability		any differentiation (i.e., prioritization)

Pathology of	- being able to scan and	Skyttner, 2005	Pathology of feedback - a situation in which a
feedback	use failures to improve		system lacks the means to improve its behaviors
	future behavior		because of insufficient scanning processes. Scanning
	- helps in bringing the	Wiener, 1948	processes provide the basis for bringing the system
	system close to a desired		close to a desired state (Skyttner, 2005; Wiener,
	state		1948). The pathological feedback situation has two
	- includes accounting for	Luhmann, 2013	sides: first, a system might lack scanning mechanisms
	negative feedback which		to enable negative feedback in which system output is
	becomes basis for acting		fed back into the system to reduce fluctuations caused
	- there is a need to		by the system or other systems. Second, a system
	consider the multiplicity		might lack scanning mechanisms to enable positive
	of causes and effects		feedback in which small effects on the system are
			ignored and in time produce more and devastative
			effects on the system. Luhmann's (2013) work also
			suggests that such a system might be operated under
			the thinking that there exists a limited set of events
			affecting system behavior. Hence, there becomes
		~~~~~	failure to consider multiplicity of causes and effects
			on system behavior

ر ۱۰ ۱۰	-		
Pathology of	- a wider base increases	watt and Craig,	rathology of Hathess - a situation in which the
flatness	stability	1988	structure of governance is an inverted pyramid. This
	- a large number of	Wildavsky, 1988	is a situation in which there is a "larger the number of
	administrators reduces		administrators relative to that of producers"
	stability		(Wildavsky, 1988, p. 114). This type of governing
	- politically, widespread		structure reduces system stability and is comparative
	legitimacy is better than		to a dictatorial regime in which "the death of only a
	dictatorial		handful of people might well cause [regime] collapse"
			(Wildavsky, 1988, p. 114). Watt and Craig (1988)
			elaborate on this issue by suggesting that a larger
			number of independent actors under the guidance of
			sufficient set of administrators will increase system
			stability. Thus, an organization in this pathological
			condition might either have a large number of
			administrators in proportion to systems being
			administered to or have a single administrator
			attempting to administer a large number of complex
			systems

•
_
<u> </u>
-
$\circ$
0
~ ~
-
$\sim$
10
~
6)
<b>U</b>
And a state of the
$\sim$
~~
~~
~~~
r .

	can be	cient	is a	elements	is	/ lack of	itions and		n vantage	
ererence - a situat	ndards by which it	ndard is not a suff	he judgment but it	v the system and it	pendorff, 1986). T	ight be indicated b	derlying presuppo:	ig system context	this case, a comme	em is lacking
hology of frame of r	ch a system lacks sta	ged. In this case, a sta	isure for the truth of t	able indication of hov	(Keating, 2010; Krip	nological condition m	xplicit articulated un	imptions and operatii	ippendorff, 1986). In	nt for judging the sys
6 Patl	whie	gbuį	mea	relia	are	path	ane	assu	(Kri	poir
Krippendorff, 1980										
 providing a reliable 	means in which a system	can be judged								
	erence									
Pathology o	frame of ref									

Pathology of	- each hierarchy is more	Checkland, 1999	Pathology of hierarchy - a situation in which a
hierarchy	complex than the one		system lacks a basic structure of a hierarchy. A
	below		hierarchy provides a regulatory structure that enables
	- each hierarchy consists	Clemson, 1984	'organization' of the system to generate desired
	of several integrated		system performance/behavior (Pattee, 1973). At each
	systems		level of a hierarchy, several systems are integrated
	- at each level of a		into a more complex than the one below (Checkland,
	hierarchy, subsystems		1999). In terms of viability, Simon (1973) notes that
	are more autonomous		hierarchies "provide the most viable form for any
	than the one above		system of even moderate complexity" (p. 27). An
	- viable system within a	Simon, 1973	organization in this pathological condition might be
	viable systems		organized as a flat system perhaps with independent
			systems whose missions are non-uniform due to lack
			of hierarchy. Insufficient or ineffective hierarchy
			might fail to provide the required level of regulatory
			controls to reduce uncertainty in the face of turbulent
			and emergent system conditions

ł.

Pathology of	- reducing the time taken	Watt and Craig,	Pathology of high-flux - a situation in which the rate
high-flux	for a resources to arrive	1988	of arrival of resources to systems in less than failures.
	at the needed destination		Related to recovery time, the pathology of high-flux
	- the recovery time may	Wildavsky, 1988	suggests the need to have resources arrive as soon as a
	be longer if the		failure occurs. The lag in arrival of resource has
	resources take longer to		implications on system stability (Watt & Craig, 1988;
	arrive		Wildavsky, 1988). Researchers have indicated that
	- the delay in the arrival		"increasing the rate of resource input per unit of life
	of could be due		form steadily increased stability" in a variety of
	bureaucracy		ecosystems (Wildavsky, 1988, p. 113). This pathology
			is most concerned with the rate of arrival of resources
			and not necessarily the efficient use of resources that
			arrive. In addition, this pathology calls for the arrival
			of the right resources and how bureaucracy can
			increase the arrival of resources (Wildavsky, 1988).
			An organization might become unstable simply due to
			delay in arrival of resources caused by, for instance,
			politics

Pathology of	- properties not possessed	Ackoff, 1971	Pathology of holism - a situation in which the
holism	by parts and properties		management assumes a mode of operation suggesting
	not possessed by the		that behaviors of an integrated system are possessed
	whole		in its subsystem parts. This pathology is different
	- both types of properties	Clemson, 1984	from the pathology of emergence in that it suggests
	are needed		that understanding of a system cannot be maintained
	- the properties of the		past a particular point of reduction. Under the
	whole are not predicted		pathological condition of holism, there are system
	by understanding parts		properties (i.e., behaviors) that cannot be deduced
	- sub-optimization parts of		from parts and there are subsystem behaviors that
	the system and not the		cannot be deduced from the system (Ackoff, 1971;
	system		Clemson, 1984; Skyttner, 1996). Nonetheless, both
	- corporate understanding		are needed (Clemson, 1984) and they vary in
	requires a clear role		arrangement, activities and functions (Smuts, 1926).
	definition and		A system operating under this pathology might
	communication		attempt to optimize subsystems in hope of improving
	- the whole is not in	Smuts, 1926	the system whole. Clemson's (1984) work also
	addition to parts and		suggests that an organization under this condition
	more of an arrangement		might lack "clear roles definitions or divisions of
	and activities and		responsibilities" and in turn lack "clear
	functions		communication about the nature of the organization",
			both of which are "source of enormous trouble" (p.
			203). The concern in this pathology is a diminished
			understanding through either examination the whole
			without parts or parts without the whole

Pathology of homeorhesis - a situation in which a	system lacks mechanisms to guide and enable it to	return it to a pre-set path or trajectory following an	environmental disturbance. As noted by Hester and	Adams (2014), the ability to return to a trajectory is	r essential for stability and survival of the system.	Disturbances are inevitable in complex system	landscape. However, a well-designed system must	include 'set points' on a timescale that ensure that the	system can return to its trajectory (Margulis, 1999;	Waddington, 1957). Without such effective	mechanisms, a system may be delayed in returning to	intended trajectory, if it can return at all
Hester and Adams	2014	Margulis, 1999			Waddington, 1957	ł						
- maintaining internal	stability	- regulated a system based	on a set of external	points	- being able to return to a	set path forward						
Pathology of	homeorhesis											

Pathology of	- moving towards greater	Kast and	Pathology of internal elaboration - a condition in
internal	complexity	Rosenzweig, 1972	which the management style creates silos due to
elaboration	 activities could 	Lutz and Hedaa,	overemphasis on development of policies and
	institutionalizing over	2006	procedures of subsystems and people management.
	time		Higher levels of organization are not necessarily bad
	 preferences might be 		(Lutz & Hedaa, 2006). In fact, Kast and Rosenzweig
	developed that hinder		(1972) suggest that open complex systems will "move
	effectiveness of		in the direction of greater differentiation, elaboration,
	relationships		and a higher level of organization" (p. 450). The
	8		problem, however, is activities could institutionalizing
			over time creating unnecessary rules (Lutz & Hedaa,
			2006). Duffy (2004) suggests that even activities that
			were "once a simplebecomes a bureaucratic
			exercise in getting multiple 'permission' signatures"
			(p. 24). Moreover, the higher increasing
			differentiation might be used as a basis for forging
			types of relationships that over time limit fruitful
			relationships with other systems (Lutz & Hedaa,
			2006). It thus appears that internal elaboration is
			expected for complex systems. However, when left
			unchecked, it can result in an explosion of policies
			and procedures for subsystems to the point that little
			attention to directed towards system development;
			limiting system productivity

Pathology of	- a continuous process of	Gibson et al., 2007	Pathology of iteration – a situation in which a
iteration	comparing actual and		system lacks means to account for continuous
	desired state		comparison of first iteration to the norm to discover
	- comparing the results of		errors. Similar to a continuous process that keeps
	the first iteration to the		comparing actual state and the desired state of the
	normal to discover error		system, the iteration process provides the means to
	 it promotes efficiency 		measure errors in a timely manner (Gibson et al.,
	through quick survey		2007). Doing iteration promotes efficiency in three
	 it promotes efficient 		ways: first, it is a quick process that precludes careful
	problem understanding		examination of all issues, second, it eliminates the
	- it eliminates the fear of		fear of making initial errors, and third, it minimizes
	failing		wasting resources spent unnecessarily on subtasks
	- promotes efficient use of		(Gibson et al., 2007). Iteration also provides the basis
	scarce resources		for an evolving system since knowledge of the system
	- promotes evolving of a	Keating et al., 2010	is always evolving (Keating et al., 2010). In fact,
	system with increased		without iteration, Keating et al. (2010) suggests that
	knowledge		one can create the right conditions for "solving the
			wrong problems or producing inadequate system
			solutions" (p. 20). In this case, solving the wrong
			problem might involve too detailed an exploration
			that is resource intensive or too shallow of an
			exploration which provides no substance
			understanding of system context

Dathology of least	- choosing a nath of least	Ferrero 1804	Pathology of least offort - a situation in which a
1 autorogy of Icase	vilvosing a paul of ivasi		Tamatogy of total calls a stramon in which a
effort	resistance		system attempts to move forward by selection of a
	- selecting a path that is	Krippendorff, 1986	path of high resistance. Started differently, this is a
	easier		situation in which a system pursues its goals using
-	- minimize total energy	Zipf, 1949	methods and tools that are deemed inefficient.
	spend in solving		Researchers have suggested that systems will always
	problems		select a path of least resistance (i.e., requiring least
	- still with the preference		energy) to achieve its goals and missions (Ferrero,
	of largest outcomes	·	1894; Zipf, 1949). Choosing between changing
			internally or changing the environment is an example
			that involves looking at the alternatives requiring least
			expenditure of resources (Krippendorff, 1986). In this
			case, the expending least energy is desirable to the
			extent that it enables production of desired levels of
			system performance. Therefore, it's essential to
			ensure that a system does not simply follow path of
			least resistance without considering maintaining
			desired system performance levels

Pathology of	- systems that maximize	Gilliland, 1978	Pathology of maximum power - a situation in which
maximum power	their flow of energy		a system lacks ability to maximize its production
	survive		through increased capacity for intake and
	- the structure of a system		transformation rate. These functions "reinforce
	is designed to maximize		production and efficiency" (Odum, 1995, p. 311). In a
	the rate of energy		competitive landscape, it's not simply enough to
	transformation		transform energy (Gilliland, 1978); systems must
	- systems with lower rate		have a higher rate of intake and transformation
	of transformation are		(Gilliland, 1978; Hall, 1995; 2004; Moe, 2013). A
	eliminated		system in this pathological condition might not be
	- prevailing system are the	Odum, 1995	able to keep up will demand. The increased demands
	ones that have higher		force the system to be replaced becoming absolute
	energy intake and		and "eventually eliminated" (Gilliland, 1978, p. 101)
	transformation		

Pathology of minimal critical specification - asituation in which a system is managed by prescribing	detailed account of what must be done and how it	must be done. In managing complex systems, it is	recommended to minimal specifications (Cherns,	1976; 1987). This might include what (i.e., task) that	must be done and not necessarily, how the task is to	be done. Cherns's (1987) work suggests that how a	task is done should be left up to the autonomous	subsystem since it is more likely to know the local	context in which the task can be fulfilled. A system	operating under this pathology will likely provide	detailed instructions on tasks and roles as well as	methods and tools for accomplishing those tasks. In	such situations, creativity and flexibility essential	elements necessary to deal with complexity (Stacey,	1996), is lost
Cherns, 1976	Cherns, 1987														
 providing minimal specifications need 	- what should be done and	not how it is done	- flexibility to enable	subsystems to decide											
Pathology of minimal critical	specification														

Cley, 1967 Pathology of multifinality - involves the notion experience. Humans have a tendency to draw	ther, 1996 premature conclusions regarding complex situati	that they have previously experienced (Eraut, 20	In such a situation, an analyst might draw conclu	since the initial operation conditions in the system	interest appear to be similar (Skyttner, 2005). Th	familiar conditions might cloud important	'distinctions' and compel the analyst to assume	knowing how to move forward, perhaps with me	positive results, using a particular approach. Hov	Clemson (1984) notes that "radically different er	states are possible from the same initial condition	(p. 214). Consequently, it is an error for one to	anticipate the same results using the same approx	even though outcomes might vary widely based	
 similar conditions; Buc different end-states 	- divergent results; same Sky	initial state													
Pathology of multifinality	L														

Pathology of	- taking in different	Watt and Craig,	Pathology of omnivory - a situation in which
omnivory	resources	1988	system's internal structures (i.e., pathways) cannot be
	- the ability to diversify	Wildavsky, 1988	modified to increase their ability to intake a diverse
	- systems that are take in		number of resources. It has been shown that systems
	different types of food		that are able to take in a diverse number of resources
	are more stable		are more stable since a decline on one of the resources
			will not affect the system (Watt & Craig, 1988;
			Wildavsky, 1988). In order for a system to take in
			different resources, it must have a modifiable internal
			structure (Watt & Craig, 1988). A system operating
			under the pathological condition of omnivory might
			lack sufficient internal structural diversification to
			enable intake and processing of different resources

Pathology of	- systems definition goes	Bednarz, 1988	Pathology of organizational closure - a situation in
organizational	beyond goal, purpose,		which a system lacks a critical part in the structure
closure	and functions		that provides closure. It appears that this essential part
	- it must include the		is identity (Bednarz, 1988; Beer, 1979). Identity of a
	concepts of autonomy		system goes beyond goal, purpose, and functions and
_	and unity		it enables a system to "maintain their unitary
	- system relationships		continuity of pattern despite the ceaseless turnover of
	enable it to be self-		their components" (Bednarz, 1988, p. 57). A system
	referential		that violates the principle of organizational closure
	- there is need to consider		might have too autonomous subsystems such that
	components and		there is no unit of the system (Bednarz, 1988). The
	processes		relationship between the system and subsystems
	- provides the basis for	Beer, 1979	might not be complementary such that the processes
	viability of the system at		undertaken are not closed. Beer (1979) suggests that a
	different levels		system lacking closure might not be viable at different
			recursion levels. An organization with this pathology
			might have extrinsic purpose and goal; but lack set of
			relationships or process that unify subsystem to the
			system and to the wider environment

Pathology of	- becoming too	Gould, 1982	Pathology of over-specialization - a situation in
over-	specialized to the point		which a system specialized too much to the point that
specialization	of lacking capacity to		it cannot afford to change. Gould's (1982) research
	change		suggests that following Darwinian advantage, a
	- high-level systems can		system might evolve to the point it restricts itself from
	be compromised by		any necessary adaptation especially in the face of a
	legitimate demands of		drastic changes. In the face of change, too much of a
	individuals		good thing at the system level might actually harm the
	- in the face of change,	Watt and Craig,	system since needs of subsystems might be ignored
	too much of a good	1988	(Watt and Craig, 1988; Wildavsky, 1988). In fact,
	harms a system		Gould (1982) suggests that higher-level systems
			infringe on lower-level systems. An organization
			suffering from this pathological condition could be
			too specialized consider any demands made by its
			subsystems or other 'lesser' systems

Pathology of	- 80% of the benefits are	Clemson, 1984	Pathology of Pareto - a condition in which
Pareto	generated by 20% of the		significant efforts are undertaken to alter the 80/20
	efforts		production curve. This pathology steams from
	 such systems operate on 		assuming the existence of a 'causal-interrelationships'
	a non-linear relationship		evident in simple system (Clemson, 1984). Research
	- attempts to make the		suggests that complex systems richly interconnected
	system more profitable		form the basis for the 80/20 law in various systems
	can actually make it less		including the fact that "eighty percent of the shares
	productive		are held by twenty percent of the shareholders" (Beer,
	- majority of the land is	Pareto, 1897	1979, p. 15). More importantly is the fact that this
	own by 20% of the		behavior is poorly understood (Adams et al., 2014;
	population		Beer, 1979; Clemson, 1984). Any "attempts to
			increase productivity (i.e., more of some desired
			output) are frequently counter productive" (Clemson,
			1984, p. 206). Failure to adhere to this principle might
			be exhibited as attempts to increase system
			productivity using a variant of the 80/20 curve.
			However, such efforts might only increase cost and
			might even reduce system productivity

		10																	_					
Pathology of patchiness - a situation in which a	system lacks ability to increase diversity in terms of	consumption of resources from the environment. This	pathology does not apply situations where the	environment has only one resource. This pathology is	counter to the pathology of omnivory which is	primarily concerned with diversification of internal	structures. Under the patchiness pathological	condition, a complex system fails to 'acquire' a taste	for different resources such that "if one set of	resources declines, there will not be any other to take	their place" (Wildavsky, 1988, p. 117). Additionally,	this pathology is the basis for consideration of	interdependencies of resources in the environment	(Watt & Craig, 1988; Wildavsky, 1988). Specifically.	research indicates that in an environment where	resources are weakly interrelated, a failure in one of	resources should not affect other resources; providing	a system with another sources of nutrients	(Wildavsky, 1988). However, in an environment with	coupled resources, a seemingly inane event affecting	resources in one area could be a source of instability	since resources might be interconnected. A system is	likely to be affected by this pathology if it only	consumes one kind of a resource despite the
Watt and Craig,	1988	Wildavsky, 1988																						
- ability to use a variety of	resources	- external counter-part to	principle of omnivory	- declining resources are	replaced with others	- too much	interconnectivity	reduces stability																
Pathology of	patchiness	.																						

Pathology of	- a system has	Ashby, 1960	Pathology of polystability - a circumstance in which
polystability	interconnected systems,		a system is managed as if system level equilibrium is
	each with its own state		similar to those of its subsystems. Ashby (1960)
	of equilibrium		suggests that subsystems have theory own
	- the system takes longer		equilibriums which are different from that of the
	to reach state of		system whole. In fact, a system with many
	equilibrium		interconnected parts, according to Ashby (1960) will
	- the system becomes		take longer to reach system level equilibrium. This is
	immune to localized		good inasmuch as local injuries (i.e., local issues) will
	injuries	-	tend to stay local and do not instantaneously
	- events in different parts	François, 2004	propagate throughout the system (François, 2004).
	of the system do not		Thus, managing such system requires understanding
	instantaneously		the "equilibrium of the whole is not merely selective
	propagate	-	of and may not even coincide with the equilibria of its
	 system equilibriums 	Krippendorff, 1986	parts" (Krippendorff, 1986, p. 58). Clearly, managing
	might not coincide with		such a system might require mechanisms dedicated to
	local equilibrium		system and subsystem level equilibriums
	- the system might have		
	many different temporal		
	rests		

\sim
ند
5
ŏ
ت
\mathbf{C}
S
63
<u> </u>
0
a.
<u> </u>

Pathology of	- ability to resolve issues	Clemson, 1984	Pathology of redundancy of potential command - a
redundancy of	by subset managers		condition where subsystems entities lack the
potential	- creativity is reduced		'freedom' to decide and act on behalf on the system.
command	 reduced speed of 		Clemson (1984) suggests that a system that is well-
	response		designed will provide subsystem with the ability to
	- information is power	McCulloch, 1965	seize opportunities. When management empowers
			subsystems it "increase[s] its speed of response;
			ability to detect novel events, information, trends,
			threats, and opportunities; creativity of decision-
			making; and comprehensiveness of decision-making"
			(Clemson, 1984, p. 213). In complex system decision
			making, the potential to act effectively is conferred to
			whoever receives information first (McCulloch,
			1965). A system suffering from this pathology might
			adhere to the chain of command (i.e., acting based on
			what is explicitly prescribed) and thus ignoring the
			essential services that can be provided by subsystem
			auxiliary channels

Pathology of	- requiring redundancy of	Clemson, 1984	Pathology of redundancy of resources - a condition
redundancy of	critical resources		in which a system is designed and operated under the
resources	- complex systems do not		assumption of optimum efficiency. Under this
	operate in ideal		condition, the resources that are allocated might be
	conditions		exactly what is needed - no more no less. In other
	- can be used to seize		words, critical redundant resources are not provided
	opportunities; but		(Clemson, 1984; von Bertalanffy, 1968; Watt &
	involves cost		Craig, 1988). However, complex systems rarely
	- intent is to increase	Pahl et al., 2011	operate under 'ideal conditions' (Clemson, 1984, p.
	reliability of the system		212). Redundancy, while it adds little, if any, is
			important in complex systems since it helps combat
			noise in a communicating system (Shannon &
			Weaver, 1949). In fact, Clemson (1984) suggests that
			"new opportunities can be seized only if there exists
			some extra managerial" (p. 212) resources. Moreover,
			Pahl et al. (2011) suggests that if reliability in a
			system is desired, then duplication of critical
			resources/functions is necessary. An organization
			subject to this pathology might operate without
			consideration of extra critical resources; but it does so
			at the risk of reliability and redundancy necessary to
			buttress performance in the wake of unforeseen
			circumstances

Pathology of	- the system is constantly	Clemson, 1984	Pathology of relaxation time - a situation in which a
relaxation time	bombarded by changes		system experiences too many changes at the same
	- there is need to reduce		time. When a system is continuously bombarded with
	relaxation time		many changes, it becomes incapable of processing or
	- reduction of system		assimilating any of the changes and becomes chaotic
	internal stability		(Clemson, 1984; Hester & Adams, 2014). Iberal
	- essential in analysis of	Hester and Adams,	(1972) recommended having a longer relaxation time
	cause of decreased	2014	(i.e., recovery time) on average than the mean time
	relation time		interval between massive external perturbations.
	- having shorter time	Iberal, 1972	Having a longer recovery time increases system
	periods than mean		internal stability (Clemson, 1984). Otherwise, the
	between failures		system will operate in a crisis mode trying to
			understand impacts and consequences of interaction
			of multiple changes without any degree of confidence

Pathology of	- ability to remain or	Holling, 1973	Pathology of resilience - a situation in which a
resilience	return to a stable domain		system, when it experiences a disturbance, has no
	- more resiliency systems		ability to quickly return to its previous configuration.
	respond to wider array		When a disturbance happens, a system can either
	of fluctuations		withstand the disturbance, temporally fail and then
	- ability to withstand a	Martin-Breen and	return to previous configuration (i.e., performance
	crises	Anderies, 2011	levels) or fail to return to its previous configuration
			(Gheorghe & Katina, 2014; Holling, 1973; Katina &
			Hester, 2013; Martin-Breen & Anderies, 2011). A
			system exhibiting this pathology might be described
			as inflexible, brittle, and hard. This pathology is also
			evident in a system that is only resilient to a narrow
			range of external fluctuations (Gheorghe & Katina,
			2014; Holling, 1973)

Patholoov of	- nsing simple or complex	Watt and Craio	Pathology of robustness - entails lacking the ability
		1000	
robustness	mechanisms for	1988	to use simple and/or complex mechanisms to
	protection		withstand environmental changes without system
	- withstanding	Wildavsky, 1988	modifications. A truly robust system is like "an
	environmental changes		animal accustomed to coping with large and sudden
	without modifications		changes in temperature" (Wildavsky, 1988, p. 117).
	- accustomed to coping in		Such a system does not need to rely on modifying
	extreme changes		anything to increase its ability to withstand
	 robustness is not cheap 		environment changes (Wildavsky, 1988). Such a
			system is always robust under a wide range of issues,
			for instance extreme heat or extreme cold. However, a
			non-robust system is only designed to be viable under
			narrow set of variables. This pathology also
			encompasses costs of robustness as in "those stalled in
			tanks or overburdened by heavy armor can testify if
			only they survive" (Wildavsky, 1988, p. 117).
			Regardless of the nature of the mechanisms for
			protection, simple or complex, the trick is to ensure
			that the mechanisms do not require modification of
			the system

Pathology of safe	- 'creating permanently	Watt and Craig,	Pathology of safe environment - a situation in which
environment	stable environment'	1988	a system fails to create a permanently stable
	- 'the system becomes	Wildavsky, 1988	environment. Watt and Craig (1988) notes that
	immune to change		systems that wish not to adapt to the environment.
			they need to create a permanently stable environment
			so that they are protected from any change from the
			environment. Wildavsky (1988) questions, and
			rightfully so, as to whether the environment can ever
			stay stable forever. However, research indicates that
			creating a more permanently stable environment
			shields the system since the environment is stable to
			produce any disturbance (Watt & Craig, 1988;
			Wildavsky, 1988). Hence, this pathology addresses
			inability of a system to attempt creating a stable
			environment in order to reduce disturbances from the
			environment

, Pathology of satisficing - a condition in which the	management team of a system searches for the best	possible solution (i.e., optimization) instead of	searching for good-enough solution (i.e., satisficing).	By following the principle of satisficing, the	management team makes the best possible solution	with given the current nature of the information at	hand (Hester & Adams, 2014; Simon, 1956).	Researchers also note that the satisficing solution is	necessary in complex situations since time and	information are always limited as well as limited	information-processing capability (Skyttner, 2005).	However, it importance to note that satisficing "it	does not mean ignoring the optimum by not striving	for the most satisfactory in decisions that support a	system's purpose, goal or objectives" (Hester &	Adams, 2014, p. 62). Moreover, failure to adhere to	the principle could results in unnecessary pursuit of	locating the best solutions for complex system
Hester and Adams	2014		Simon, 1956			Skyttner, 2005												
- making the best possible	solution with current-	incomplete information	 systems do not 	necessarily maximize;	rather they satisfice	- first acceptable solution	is considered to be as	good as all others	- it is necessary because	of limited time, limited	information, and limited	information-processing	capability					
Pathology of	satisficing																	

Pathology of self-organization - a condition in wh	management fails to work with the self-organizing	tendencies of complex systems. This condition mig	, happen when an organizing structure limits autonor	of its subsystems by using global patterns to influer	local interactions (Camazine et al., 2008). This is in	direct contrast to letting behavioral patterns to emer	out of the interaction of subsystems (Ashby, 1962;	Clemson, 1984; Skyttner, 2005). As suggested by	Clemson (1984), "some of the aspects [for example	culture] that are not intentionally designed" (p. 219	by managers and that it's best to work with the	organization rather than against those aspects that	cannot be designed. However, there is a fine balanc	between surrendering all autonomy and dependence	on a system. Thompson and Cuff (2012) argue that	unrestricted autonomy might results in unconstraine	run-away independence while a dependent subsyste	could be limited in its freedom of decision, action,	and interpretation. Therefore, pathological conditio	of self-organization provision for self- organization	1 france france
Ashby, 1962			Camazine et al.	2003				Clemson, 1984	-												
 complex system 	organize themselves	through interaction	- rules specifying	interactions among	subsystems are executed	using only local	information	- behavioral patterns are	due to interactions and	not necessarily	managerial deliberate	actions	- some aspects of a system	are not intentionally	designed	 good managers work 	with the system and not	against the system)		
Pathology of self-	organization		L																		

Pathology of	- if they are too coupled, a	Wildavsky, 1988	Pathology of separatibility - a situation in which
separability	breakup in one will		subsystems are tightly coupled together such that a
	reverberate		small disturbance is reflected throughout the entire
	- small disturbances		system. In other words, the tight coupling in a large
	increase in the		number of subsystems along with positive feedback
	magnitude		creates the right conditions for a single breakdown in
			one of the subsystems to have a major effect on other
			subsystems and the system as a whole (Watt & Craig,
			1988; Wildavsky, 1988). In such a situation, a small
			disturbance is able to increase in the magnitude and
			could result in "spiral[ing] out of control" system
			(Wildavsky, 1988, p. 115). Research shows stability is
			compatible with an increase in variety of subsystems
			or connections among subsystems; but not both
			(Wildavsky, 1988). An organization that does both,
			creates enabling conditions for a single failure to
			affect the entire organization

each subsystem has	Ashby, 1960	Pathology of steady state - a condition in which one
power to veto		focuses on the steady state of a system whole while
a system can only a	Clemson, 1984	ignoring steady states of subsystems. This is an error
steady state if		since a system cannot be in a steady state if any of its
subsystems are in steady		subsystems are not in steady states. In creating a
state		steady system, Ashby (1960) notes that it is necessary
behavior of each		to account for each subsystem since they all have the
subsystem affects other		"power to veto" (p. 79). Moreover, one must account
subsystems		for all subsystems, since they affect each other's
a false sense of safety is		behavior (Clemson, 1984). A steady state in this
created due to past		pathology involves issues such as system and
success		subsystem capabilities and not necessarily growth or
		decline. This is why Clemson (1984) warns against a
		false sense of safety created by past success. Since
		system steady state cannot be archived with
		subsystems that are not in their steady states, it
		becomes necessary to ensure all subsystems are in
		steady states
	a system can only a steady state if subsystems are in steady state behavior of each subsystem affects other subsystems a false sense of safety is created due to past success	a system can only a system can only a system can only a state if subsystems are in steady state behavior of each subsystem affects other subsystems a false sense of safety is created due to past success

		it	ove			lly	the	٤.	0	le		~	ديب		J			
Pathology of sub-optimization - elaborates on	several other pathologies including emergence,	holism, and satisficing. It suggests that independen	improvement of subsystems does not always impro	the performance of the integrated system whole	(Ackoff, 1977; Hester & Adams, 2014; Heylighen,	1992; Hitch, 1953). In fact, seeking to independent	optimize subsystems can worsen the performance t	integrated system whole (Heylighen, 1992). Rather	than looking for an optimal solution, "we should be	trying to design and create a process that will enab	the system involved to make as rapid progress as	possible towards its ideals" (Ackoff, 1977, p. 5). It	operations research, this is done through a series of	compromises between the analyst and his client	(Hitch, 1957). This pathological condition might b	evidenced when sacrifices for global system level	unity are done in the interest of individual local	member subsystems
Ackoff, 1977		Heylighen, 1992																
- looking for an optimal	solution to a mess	- independently dealing	with subsystems	worsens overall system														
Pathology of sub-	optimization																	

a principle of subsidiarity is ignored, a local issue might Pathology of subsidiarity - a situation in which local issues need to always be solved by a higher authority. Wheeler, 1970). In the European Union, for instance, be elevated to the system level platform which shifts fact that there is more value to solving such issues at local level so long as the solution is in harmony with subsystems can only refer a tool-bag of system level solutions, so long as their tool-bag does not contain always resolved at a "higher authority" despite the and divides the attention and resources from truly situation in which subsystem issues/conflicts are the local members always handle local transport safety issues (Koornstra et al., 2002). When the system-level issues. Thus, this pathology is the authority must solve it (Koornstra et al., 2002; A local issue is a subsystem issue and a local the objectives of the system. In other words, the solution Koornstra et al., Wheeler, 1970 2002 ensuring that local issues problem solving without are solved by local involving higher authorities authority . Pathology of subsidiarity

Pathology of	- understanding the	Crownover, 2005	Pathology of system context - simply attempts to
system context	system of interest and		address the issue of viewing a system independent of
	establishing meaning		the context in which it is embedded. Researchers have
	- it is not defined by a line		suggested that it is impossible to understand and draw
	of demarcation		the meaning of system independent of its context
	 systems do not operate 		(Crownover, 2005; Keating et al., 2010; Keating et
	independent of context		al., 2003a; Krippendorff, 1986). Context, according to
	- system structure and	Keating et al.,	Keating et al. (2010) includes "circumstances, factors,
	behavior are interrelated	2003a	conditions, or patterns that enable and/or constrain the
	to context		system, system solution development, system solution
	- elaborates in the	Krippendorff, 1986	deployment, or interpretation" (p. 19). Unlike
	meaning of a system		environment, system context is not represented by a
,)		line of demarcation (Crownover, 2005). In fact,
			Keating et al. (2003a) notes that system structure and
			the behavioral patterns are a result of interaction with
			the context; hence, one cannot be understood without
			the other. Attempting to understand the system
			without its context is restricting and could be a source
			of development of an ineffective solution space
Pathology of the	- system control involved	Skyttner, 2005	Pathology of the first cybernetic control - a
------------------	-------------------------------------	-----------------	--
first cybernetic	automatic comparisons		situation in which system lacks ability to compare
control	followed by continuous		system behavior against a set standard. When the
	feedback		comparison is done, the system might lack mechanism
			to enable corrective measures and actions to be
			undertaken (Skyttner, 2005). Cybernetic control is
			only possible if behavioral characteristics of a system
			are continuously monitored and adjusted. An
			organization with this pathology might lack means to
			compare behaviors and/or means to adjust behavior
Pathology of the	 a system change 	Quentall and	Pathology of the Red Queen - the condition in which
Red Queen	environment or keep	Marshall, 2013	a system fails to survive because of its inability to
	adapting		compete with other systems in the same environment.
	- a system must	van Valen, 1973	This goes beyond ideas of adapting, evolving and
	continuous develop to		proliferation inasmuch as they relate to gaining a
	remain its fitness		competitive advantage. It relates to the idea of simply
	- a situation in which a		surviving inasmuch as surviving means an
	predator and prey must		organization takes all the running it can do, to stay in
	run faster		the same place (van Valen, 1973). Each system must
	- on average, there are		continuously improve in order to survive since related
	only relative		systems are always continuously improving as well
	improvements		(Quentall & Marshall, 2013; van Valen, 1973). An
			organization operating under this pathology might not
			be doing enough development (i.e. running) to keep
			up with other organizations. The objective of running
			is not to gain advantage; it is to ensure the system is
			keeping with other systems

Pathology of the	- control is related to	Ashby, 1956	Pathology of the second cybernetic control $-is$
second cybernetic	commination		similar to the first cybernetic control pathology and
control	- communication provide		addresses control in terms of communication. It states
	regulations which can be		that a system might go out of control if its
	used address		communication elements are incapable of providing
	disturbances		sufficient regulations to address variety. In this case,
			communications provides regulations that enable the
			system to address any disturbances that might impede
			the system (Ashby, 1956; Skyttner, 2005). More
			specifically, Skyttner (2005) suggests that cybernetic
			"control is synonymous with communication" (p.
			101). This means achieving desired performance is
			actually directly related to efficient communications.
			Thus, a pathology of second cybernetic control
			involves having communications that are incapable of
			providing regulations to combat system variety
Pathology of the	 going out of control 	Skyttner, 2005	Pathology of the third cybernetic control - provides
third cybernetic	1		a grave warning regarding tinkering with unbroken
control			systems. It states that a system can only be brought
			into control (i.e., a more preferred state) if it has gone
			out of control (Skyttner, 2005). In other words, a
			system that has not gone out of control can never be
			brought into control. A system is more likely to suffer
			from this pathology, if efforts are undertaken to
			improve system performance that is not out of control:
			if it ain't broke don't fix it

Pathology of	- beyond physical and	Capra, 1982	Pathology of transcendence - addresses assumption
transcendence	mental boundaries		of stability and viability in complex systems as only
	- God is seen as the		be achievable within the confines of reality as defined
	source of understanding		and understood within the objective realm of
	 some experiences are 	Krippendorff, 1986	scientific/physical laws. According the White and
	beyond human logic	r 1	Krippner (1977), this is an error since the universe
	 information beyond 	White and	sometimes organizes itself in dimensions beyond just
	physical laws of science	Krippner, 1977	the physical space-time frame. Krippendorff (1986)
			further elaborates that sometimes the human logic is
			simply not powerful enough to understand the
			complexities of universe realities. In such situations,
			God is seen as the source of all understanding (Capra,
			1982). A system suffering from this pathology might
			discourage belief in God and dismiss accompanying
			activities (e.g., praying) since science and human
			understanding takes precedence. This pathology
			suggest belief that understanding might lie beyond
			rational, scientific, or determinate explanation in
			which explanation exists at the metaphysical level and
			must be taken on 'faith'

Pathology of	- a system capable of	Beer, 1979	Pathology of ultra-stability - a condition in which a
ultra-stability	operating in the face of		system can fend off anticipated disturbances but it is
	unknown events		not sufficiently designed to fend off unknown
	- a logic higher level of	Krippendorff, 1986	disturbances without changing its internal structures.
	stability in which the		This pathology addresses system stability at a
	system deals with		logically higher level (Krippendorff, 1986; Young,
	perturbations without		1968) than, for instance, pathology of adaptation.
	changing internal		environment-modification, and patchiness, inasmuch
	structure		as they require modification of system structures.
			Moreover, the pathology of ultra-stability calls for
			stability against unknown disturbances (Beer, 1979).
			Thus, an ultra-stable system is designed to operate
			under anticipated disturbances and well as those that
			are not anticipated and without changing the structure
			of the system

Pathology of	- being able to infer	Segal, 2001	Pathology of undifferentiated coding - deals with
undifferentiated	reality and knowledge		the issue of objectivity and subjectivity in
coding	from indirect		understanding issues affecting systems. More
	communication		specifically, this pathology is a situation in which
	- being able to tell varying		reality and knowledge are directly attributed to
	degrees of pressure		observable results such that anything that does not
	without seeing		involve human sensors such as eyes, ears, and touch is
	- when we can use of		not valued (Segal, 2001). Researchers indicate that it
	sensors, progress can		is possible to infer reality and develop knowledge
	still be done:		from indirect communication including being able to
	suppressing belief that		tell the difference between varying degrees of
	the sensors		pressure (Segal, 2001; von Foerster, 1973). This
	- making inferences about		supports the notion that human sensors can be used to
	the world based on one's		project the real world such that rather seeing and then
	own sensations		feeling the world, it becomes possible to feel and then
	- reality can be deductive	von Foerster, 1973	see the world (von Foerster, 1973). This pathology
	in nature		suggests a need to include subjectivity in problem
			formulation. Failure to include subjectivity limits the
			deductive power of individuality (i.e., feelings and
			interpretations) in dealing with complex systems,
			which could be a reflection of the real world

Pathology of	- ensuring consistency	Beer, 1985	Pathology of unity - a situation in which a system
unity	among the performance		lacks an integrated system purpose or having an
	of metasystem and		identity that is not easily distinguishable from other
	subsystems		systems. In cybernetics research, unity of s system is
	 work is required to 	Keating et al., 2010	directly related purpose (Angelo, Gudwin, & Queiroz,
	maintain a purpose		2006; Beer, 1985; Keating et al., 2010). The
	- provides the basis that	Maturana and	metasystem structure is what is tasked with achieving
_	enables a system to	Varela, 1980	an integrated system purpose (Keating et al., 2010).
	exists		Moreover, an integrated system purpose forms the
			basis for systems existence and distinguishes it from
			other systems (Maturana & Varela, 1980). Since it is
			not easy to design, maintain, and evolve system
			identity over time, it is easy to not pay attention to it.
			Over time, the system might lose that which makes it
			unique

\sim
أتست
Ē
ō
õ
\sim
\sim
S
<u> </u>
9
ື
<u> </u>

Pathology of	- keeping key parameters	Adams et al., 2014	Pathology of viability – is concerned with failure to
viability	in control		balance two related elements: subsystem autonomy
	- ensuring subsystems can	Beer, 1979; 1981	and integration of the whole and system stability and
	exist as a separate		system adaptation. First, researchers have indicated
	systems		that in order for system to be and remain viable, key
	- balancing autonomy of		system parameters must be controlled and maintained
	sub-systems and		within their physiological limits (Adams et al., 2014;
	integration of system		Ashby, 1960). Secondly, viability, according to Beer
	whole		(1979) involves ensuring that productive subsystems
	- balancing stability and		have capability to survive as independent systems.
	allowing adaptation		Clearly, this can only happen if the key variables are
	- the manager must		also present in subsystems. The manager plays a
	establish criteria for		significant role in ensuring system viability and
	stability, detect		stability. Beer's (1979; 1981) work suggests that the
	instability, and modify		manager establishes criteria for stability, detects
	criteria		instability, and modifies criteria based on assessment.
	- adaptation involves		Such assessments are the basis for balancing the two
	progressive modification		major dimensions of autonomy-integration and
	- too much autonomy,	Clemson, 1984	stability- adaptation. Without the right balance, the
	integration, stability or		system is more likely to cease existing because of
	rapid adaptation can		being too autonomous subsystems, too integrated, too
	harm the system		stable, or experiencing too many rapid changes
	•		(Clemson, 1984). Failure to balance dimensions of
			autonomy-integration and stability- adaptation is the
			basis for viability pathology

Pathology of	- the difference in	Agarwal and	Shannon-Hartley's channel capacity pathology -
channel capacity	messages should not	Tiwari, 2005	has to do with the ability of a communication channel
	affect the transmission		to transmit different messages without channel
	- message the	Price and	modification. A well-designed communication
	transmission affected by	Woodruff, 2012	channel accounts for noise (i.e., any factor in the
	noise		process that works against the predictability of the
	- the transmission	Shannon and	outcome of the communication process) in
	accounts for channel	Weaver, 1949	transmission (Price & Woodruff, 2012). It also
	capacity		enables transmission of information, measured in bits,
	•		regardless of its kind (Agarwal & Tiwari, 2005). In
			order for this to take place, a communication channel
			must have a maximum possible rate of transmission,
			which involves transmission time, propagation time,
			throughput, and system noise (Agarwal & Tiwari,
			2005; Shannon & Weaver, 1949; Shannon, 1948a;
			1948b). Failure to account for the maximum rate of
			information transmission might create the right
			conditions to partially receive information,
			information arriving late, or not arriving at all. These
			situations are not desirable and could contribute to
			"misinterpretation of information" (Shannon &
			Weaver, 1949, p. 40). An organization under these
			conditions can have communication systems that are
			not effective with providing relevant information in a
			timely manner

hology of	- language of a framework	Clemson, 1984	Gödel's incompleteness pathology - a condition in
pleteness	 Is always incomplete there is always a change 		which a system is operated upon as it its traditional terms of discourse/frame of reference is both
	to encounter unforeseen		consistent and complete. Any given frame of
	events		reference/framework is always incomplete (Clemson,
	- a system can always		1984; Kleene, 2002; Gödel, 1962; Skyttner, 2005).
	encounter issues that		This is because the design of a framework cannot
	have not been		possible consider all events including unforeseen ones
	expressible in the		(Clemson, 1984; Kleene, 2002). There is always a
	traditional discourse		chance that a framework will encounter an issue that
	 subsystem language 		hasn't been articulated Clemson (1984).
	frameworks are		Theoretically, even a generated theory cannot be both
	developed with certain		consistent and complete since it is often developed
	assumptions when		within certain assumptions (Kleene, 2002). Similarly,
	compared to the system		in a hierarchy, the same framework is not expected to
	level		be applicable in all levels. Human intervention is
	- humans provide closure		needed to provide closure. Otherwise, there might be
	otherwise we run into an		an infinite progression of meta-meta-meta etc.
	infinite progression of		systems and corresponding frameworks (Clemson,
	meta-meta-meta systems		1984). Under this condition, management may assume
	- the framework itself		all performance issues are understood and therefore
	could be a problem		solvable using the same frame of reference. However,
	- a generated theory	Kleene, 2002	this thinking limits system development as there is
	cannot be both		always a likelihood that issues will arise beyond the
	consistent and complete		current frame of reference. This pathology is evident
			in healthcare, terrorism, and intractable conflicts that
			appear to defy resolution within the different frames
			of reference in which they exist

Pathology of	- making messages	Clemson, 1984	Pathology of information redundancy - describes a
information	redundant to reduce		situation in which little insufficient efforts are
redundancy	error in communication		dedicated to reducing error in information
	- redundancy is expensive		transmission. More specifically, researchers suggest
	- redundancy requires		that information transmission (i.e., communication)
	extra channel capacity		can be enhanced by making messages that are being
	- redundancy can be	Hester and Adams,	transmitted redundant (Clemson, 1984; Hester &
	viewed positively or	2014	Adams, 2014; Shannon & Weaver, 1949). However,
	negatively		this redundancy can be viewed as waste of resources
	- redundancy might be	Shannon and	(Hester & Adams, 2014) since it is reparative
	viewed as unnecessary	Weaver, 1949	(Shannon & Weaver, 1949) and requires extra channel
	since its repetitive		capacity and might cause fatigue (Clemson, 1984).
	- an error in transmission		Nonetheless, redundancy reduces the probability of
	can be reduced through		error in the system (Hester & Adams, 2014; Shannon
	redundancy		& Weaver, 1949). Thus, the pathology of information
			redundancy might be experienced as a failure to
			balance between tolerable error levels and redundancy
			required. This pathology is reinforced by the notion of
			reluctance to enact redundancy mechanisms that
			might be viewed as waste. In such a situation, the
			probability that organization will receive the right
			information is greatly reduced

Pathology of morphogenesis - a situation in which a	system fails to remain stable after creating a new and	radically different structure elaborating on the existing	structures as conditioned by morphocatalyst	influencing the system. Regardless of how the new	structure is created, gradually or overnight, the	purpose of the new structure is to support the existing	system. In this case, a morpohogenic system in the	new system that is developed to address a new need	(Becvar & Becvar, 1999; Krippendorff, 1986; von	Bertalanffy, 1968). Such efforts can be classified as a	failure if the morpohogenic system does not address	the original intended purpose. Another aspect of this	pathology is having a morphocalalyst (e.g., a	consultant) who is frequently allowed to provide new	information to the system without allowing sufficient	time for information assimilation (von Bertalanffy,	1968). Pathologically, creating a new useless structure	and/or allowing changes such as innovations and	other developments from other systems, to influence	you might contribute to your demise
Krippendorff, 1986							von Bertalanffy,	1968												
- the process of creating	new organizational	structures	- can be radical such as a	realization of new ideas	- can take place in a	gradual setting	- structure development	elaborates on a system	structure	- a morphogenic system is	capable of continuity by	changing its essential	aspects							
Pathology of	morphogenesis																			

- chan	ging appropriately	Becvar and Becvar,	Pathology of morphostasis - a condition in which
main stable	•	1999	stability of an organization is reduced by resisting
ility is requi	red to		change (i.e., preferring the status quo). Systems must
ige and main	itain self		be able to appropriately change to maintain their
ncing			stability (Becvar & Becvar, 1999). This involves
phogenesis (c	change)		allowing changes that do not threaten the existing
g with morph	nostatis		level of stability and keeping the current stability
oility)			structure (Krippendorff, 1986). This pathology is
er extreme of			relevant since some systems go to great lengths to
phogenesis ar	pr		keep themselves working as they have always done in
phostatis is nc	t		the past (Day, 2014). Clearly, extreme change (i.e.,
rable			morphogenesis) and extreme stability (i.e.,
ell-functioning			morphostatis) is not desirable (Becvar & Becvar,
em will involve	es		1999). However, failure to allow relevant changes to
ystems as well	as		take effect, creates the right condition for denying
· relationships			good innovations and developments to positively
process of retai	ining	Krippendorff, 1986	impact stability of a system
cture of stabili	ty		
nitting changes	s that		
ot threaten exi	isting		
ility			

Pathology of	- part of fundamental of	Stiglitz, 1991	Pathology of Pareto optimality - a situation in which
Pareto optimality	welfare economics		a measure (e.g., allocation of resources) is undertaken
	- not possible to make one		to improve one part of a system; this is believed to
	part better without		have no adverse effects on other systems. In welfare
	making another worse		economics, it has been shown that it is not possible to
	- society-wise, efficient		make one part of the system better without making
	resource allocation may		another part worse-off (Stiglitz, 1991; Tan, 2008;
	be possible but not		Wright, 2003). When the theorem of Pareto optimality
	desirable		is violated, one might operate a system in a manner
	- developing a solution in	Tan, 2008	that suggests that one can take certain measures to
	which at least one		improve a system/subsystem without making other
	receives a penalty		subsystems worse-off. Wright (2003) notes that this is
			a flawed thinking since measures undertaken to
			improve one part of the system have to be allocated
			from "somewhere" (p. 78). In this case, the terms of
			worse-off and 'better-off' are relative to
			'desirability' of each entity involved. This pathology
			is likely have adverse effects especially in situations
			where one lacks perfect information on entities such
			that a full picture is missing

Dothology of		D 1070	Detholom of munocity hohenitation of situation in
r autology of	- a sysicili ilas a pui pusc	Dect, 19/9	I autiology of pur posive benavior isin - a situation in
purposive	and it does include		which the purpose of the system is unguided and
behaviorism	outputs and outcomes		primarily based on intended results as opposed to
	- the purpose is	Keating et al., 2010	what the system produces. Tolman (1948) noted that
	ascertained via		system behavior is related to both purpose and
	examination what is		objectives. This was instrumental in demonstrating
	being produced and not		system actions are always purposeful and goal-
	was is intended		oriented. Along the same thought process, Beer
	- the purpose includes		(1979) noted that regardless of the intent of the user,
	tangibles and intangibles		the system will produce what it does. The
	- combining objective and	Tolman, 1948	implications for this include the need to guide system
	purpose		purpose while accounting for directly measurable
	- actions must be		'outputs' that includes patterns, products, and service
	purposeful and		and the 'outcomes' that are indirectly measured such
	deliberate goal-		as consequences (Beer, 1979; Keating et al., 2010).
	orientated		This pathology might be evidenced in organizations
			that focus on what they are supposed to produce (e.g.,
			treating consequence) rather than improving the
			underlying structure producing the results

		0								C	0										
Pathology of recursiveness - is a violation of the	theorem of system recursion that can be defined as a	condition in which the system in question is incapable	of defining itself as a viable system containing viable	systems and being contained in a viable system.	Researchers have suggested that viable systems are	recursive in nature; containing other viable systems	and contained in a higher viable structure (Beer, 1978)	Krippendorff, 1986; Smith, 1994). In a recursive	structure, each system becomes self-referential as in a	"program that knows its own name and hence, [it] can	access its own code, and then it is to figure out how to	apply the recursion theorem" (Smith, 1994, p. 39). In	this structure, any attempt to exist as an independent	system, without appreciation of the system within	which the system is embedded, as well as the systems	that are embedded within the system, presents	potential difficulties. These potential difficulties	including system collapse are possible since the	governing laws, processes, functions, and structure	might create insurmountable dysfunctions within the	svstem at different recursion levels
Beer, 1978			Krippendorff, 1986			Smith, 1994															
- availability of	fundamental laws at	different recursions	- recursion makes the	structure of the system	grow	- defining the system in	terms of itself	- the system becomes self	-referential												
Pathology of	recursion																				

Pathology of	- confusing abstract ideas	Krippendorff, 1986	Pathology of reification - a situation in which reality
reification	with material things	4	is distorted because of confusing abstract ideas to
			concrete entities. Young's (1964) words make it more
			apparent: this pathology occurs when "an analytic or
			abstract relationship [is treated] as though it were a
			concrete entity" (p. 109). Evidently, this is not a new
			problem in many fields. Krippendorff (1986), for
			instance, notes that the term 'system' is often
			confused with physical entities despite being a
			construct helping to explain situations in the real
			world. This pathology could also be extended to
			operating worldviews such as in objectivism and
			subjectivism (Flood & Carson, 1993) and capitalism
			and communism (Menke, 1999). For instance,
			subjectivity is well suited for complex system
			requirements elicitation as opposed to an objective
			approach (Katina et al., 2014a). Clearly confusing
			entities for others especially abstract and real ones has
			implications for how one approaches world issues

-									_													
Pathology of genesis of structure - addresses the	need to initiate and maintain communications among	forming structures in a system. As noted by Maturana	and Varela (1980), a structure cannot be formed	unless there is a relationship between involved parts.	In fact, it has been suggested that development of the	forming structure is dependent on communication	among elements (Krippendorff, 1986). Keating (2009)	suggests that time is also needed - letting enough time	to pass by for a structure to take shape. The theorem	of genesis of structure is supported in other	viewpoints including D.K. Hutchin's configuration	entropy concept of maintaining overall system	structure but changing some elements (François,	2004). The emerging structure contributes to viability	of the system. However, a system might fail to keep	consistent flow of information to its subsystems	including a new forming structure: this is the basis for	pathology of genesis of structure. The new forming	structure cannot mature into a viable system. The	merging structure simple becomes a waste of time and	other resources with implications of the viability of	the system as a whole
François, 2004							Keating, 2009			Krippendorff, 1986												
- the theorem of structure	genesis is supported by	many systemic	viewpoints	- they relate to efficient	use of space changing	structure to enable order	 letting enough time to 	pass by for a structure to	take shape	- development of structure	is dependent on	communication among	elements and time									
Pathology of	structure genesis						L			.												

Pathology of synchronicity - a situation in which	phenomena about a system appears to be	meaningfully related but is ignored since it is	impossible to be explained in terms of causality-	language. Traditionally, there is a tendency to explain	events in terms of cause and effect. However, the	theorem of synchronicity suggests it is possible to	observe acausal events (Jung, 1960; 1973). This is a	situation in which occurrence of two or more events	appear to be meaningfully related and yet not causally	related (Tarnas, 2007). The observer creates the	meaning (Jung, 1960). In fact, upon further	inspection, a causal relationship might appear	inconceivable (Jung, 1973). In terms of pathology, if a	system is managed from a traditional approach, then a	phenomena in a system is expected to be understood	in terms cause-effect relationship. The acausal events	might be ignored. In fact, Jung's (1973) research	indicates that it is an error to ignore acausal	relationships since present resources might not be	equipped to handle an acausal relationship. A lack of	causality does not in itself prove that there is no	relationship. Dismissing acausal relationships as	unsound is a characteristic of the pathology of	svnchronicitv
Jung, 1960		Jung, 1973			Tarnas, 2007																			
- meaning is created by	observer	- a closer inspection might	even reveal that there is	no causality	- events might appear to	be related																		
Pathology of	synchronicity				<u></u>																			

		ly	nind	p. 3).	ource,	e),	d into	9).	on as	udes). It is		tner,		ster	hen		smit,	that	of this	icy.	pu		an`t	s not	
creceiver of	ormation as	ation is broad	which one 1	'eaver, 1949,	e (message s	of the messag	st be translat	Weaver, 194	ing informati	005) and inc.	, storing, and	1948a; 1948)	ng and can be	energy (Sky	ntal in syster	ind, 1999; Hi	akes place w	ation and is	ilures to trai	r meaning sc	s are aspects	l lack <i>efficie</i>	can be sent	signals of	system that c	information	
nication - the	to receive infi	r. Communica	procedures by	shannon & W	mation source), a receiver (c	message mus	(Shannon &	ves representi	r (Skyttner, 20	le processing.	n (Shannon,	tion processir	ects including	n is instrumer	ility (Checkla	nmunication t	ds the inform	ver, 1948). Fa	e messages fo	vide responses	a system will	er second that	y (extent that	derstood). A	tely transmit i	
gy of commu	tion is unable	d by the sende	as "all of the p	ect another" (S	olves an infor	nitter, a signal)	stination. The	n terms of bits	inication invol	I by the sende	isms that enab	l of informatic	ted to informa	d to other obje	Communicatio	oility and viab	ns, 2014). Con	iver understan	ed by it (Wea	and/or decode	iver can't prov	gy. Thus, such	information pe	1) and accurac	tion can be un	tly and accura	d to viable
Patholo	informa	intende	defined	may aff	This inv	a transn	and a de	a code i	Commu	intende	mechan	retrieva	not limi	extende	2005). (survival	& Adan	the rece	influenc	receive,	the rece	patholo	(bits of	receive	informa	efficien	expecte
id, 1999			nd Adams,				, 1948a;					2005						1948									
Checklan			Hester ar	2014			Shannon.	1948b				Skyttner,	•					Weaver.									
is	stem		goes	th	ntial		nt		enable	ing, and		entation	ts sender		is not	nation		includes	d and	sage)						
munication	essary for sy	ival	municating	in hand wi	rol and esse	ility	I for differe	munication	hanisms to	essing, stor	eval	lves represe	nformation a	nts	munication	ted to inforr	essing	munication	nencing min	ning of mes)						
- com	nece	surv	- com	hane	cont	viab	- need	com	mec	proc	retri	- invc	of ir	inte	- com	limi	proc	- com	influ	mea							
athology of	communication																										

397

Pathology of control - a condition that emerges out	of having ineffective control mechanisms. Control, is	, what "permits the system to adapt and remain viable".	(Hester & Adams, 2014, p. 58). In terms of	mechanisms, inadequate control involves a lack	regulatory capacity needed to preserve system identity	which includes the concepts of unity, uniqueness, and	continuity (Aizermann, 1975). The required	regulations must be communicated, hence the	importance of communication in system control	(Hester & Adams, 2014). A system with a control	problem might use significant efforts in order to	provide control and therefore will tend not adhere to	the use of minimal efforts as suggested by Skyttner	(2005). This pathology might be evidenced along	three dimensions: 1) <i>ineffectiveness</i> the extent to	which organization is unable to consistently achieve	its intended mission/goals, 2) <i>inefficiency</i> the	extent to which organization is unable to utilize	resources efficiently, and 3) <i>inefficacy</i> the extent to	which an organization is unable to effectively	contribute to the higher-level system purpose to	produce desired effects (Skyttner, 2005). A system in	this condition is incapable of maintaining its goals or	realigning them, or removing bad goals
Checkland and	Scholes, 1990	Hester and Adams,	2014	Skyttner, 2005																				
- control is necessary for	system survival	 control is not possible 	without communication	 control should be done 	with minimal efforts	- control involves minimal	constraints necessary to	ensure desirable	performance	-														
Pathology of	control			L																				

Table 52 (cont.	
Table 52 (cont	•
Table 52 (cont	مسد
Table 52 (con	
Table 52 (coi	_
Table 52 (co	-
Table 52 (co	\sim
Table 52 (c	<u> </u>
Table 52 (6	1
Table 52 (<u> </u>
Table 52 (~~~
Table 52	-
Table 52	
Table 52	\sim
Table 5	
Table (10
Table	V
Table	
Table	A \
Tabl	U
Tab	-
Tab	-
Tal	
Та	_
Ë	
H	
	<u> </u>
	•

Pathology of dynamic equilibrium - a situation in	which system expected performance is reduced due to	imbalance in interactions with external systems. To	maintain stability, a complex system is designed to	continuously interact and exchange resources with its	environment and other systems (D'Alembert, 1743;	Hester & Adams, 2014; von Bertalanffy, 1968). The	pathology of dynamic equilibrium occurs when the	rate of exchange, say information, between	system/subsystems and its environment/other systems,	is altered such that it is increased or decreased. In fact,	a system will remain in a state of dynamic	equilibrium, as a preferred state, unless an altercation	happens (Hester & Adams, 2014). Altercation might	make the system lose its dynamic stability which then	affects performance of the system. In terms of	pathology, this would seem to indicated the need to	effectively balance interactions with other	systems/environment
D'Alembert, 1743																		
- for a system to be in	equilibrium, all its	subsystems must be in in	equilibrium															
Pathology of	dynamic	equilibrium																

Pathology of	- long periods of relative	Calida and Katina,	Pathology of punctuated equilibrium - a situation in
punctuated	stability while building	2012	which the long periods of stasis (i.e., relative
equilibrium	stress		calmness) become the basis for a potentially
	- longer periods of stasis	Eldredge and	catastrophic event. Evidently, some systems exhibit
	followed by a burst	Gould, 1972	little change over the course of a life time (Gould &
	- exhibiting little changes,	Gould and	Eldredge, 1977). Such systems might remain
	but when change	Eldredge, 1977	relatively stable even if stress is built-up over time
	happens, it is drastic)	(Eldredge & Gould, 1972; Gould & Eldredge, 1977).
			However, these periods of relative calmness can
			create a false sense of safeness up to and leading to
			point of a 'burst' (Calida & Katina, 2012; Eldredge &
			Gould, 1972; Gould & Eldredge, 1986). These bursts
			might be explained in terms of black swan event that
			are often labeled as low probability, high
			consequences and/or x-event event that are often rare
			and unthinkable. These events are often dismissed and
			labeled as fictitious and improbable (Casti, 2012;
			Taleb, 2010). This pathology is unique in that its
			consequences cannot simply be understood a priori.
			Moreover, the relative calmness, rarity and the low
			probability of a catastrophic event should not be used
			as a basis for ignoring events that could have major
			implications for a system

Pathology of	- improving design and	Cherns, 1976	Pathology of sociotechnicality - a condition in which
sociotechnical	performance by		preference is offered to either the social (i.e.,
system	including both social		soft/human aspect) or the technical (i.e., technology in
	and technical		the workplace) aspect of an organization. The
	- numerous principles	Clegg, 2000	sociotechnical perspective explicitly embraces the
	sociotechnical systems		idea that social and technical aspects of a system are
	- joint optimization of	Keating et al.,	interconnected, that none should take logical
	social and technical with	2001a	precedence over the other (Cherns, 1976; 1987;
	being subordinate to the		Clegg, 2000; Jordan, 1963; Keating et al., 2001a;
	other		Klein, 1994). This notion is well established with
			numerous principles that can be used to enhance
×			system design (Clegg, 2000). These ideas are
			reinforced by Keating et al. (2001a) which suggests
			that the strength of the sociotechnical systems
			perspective lies in the systemic consideration of the
			technical subsystem, the social subsystem, and the
			joint influence of subsystems on one another. Failure
			to adhere to a joint optimization of the social and
			technical aspects of complex systems could be
			expressed as promoting one aspect over the other.
			Such efforts can only constrain system potential

																******	*****	****			
Pathology of system boundary - a situation in which	a boundary (i.e., line of demarcation) of a system is	fuzzily defined. A line of demarcation provides	minimum description distinguishing a system from its	environment (Bowler, 1981; Forrester, 1994; Mitroff,	1998; Warfield, 1976). However, a lack of a line of	demarcation, as suggested by Troncale (1977), might	make it difficult to attain system goals. In this case,	system goals and objectives are directly established in	terms of boundary. Consequently, a lack of this	boundary creates the right conditions for pursuing too	narrow or too wide a scope of goals/objectives. These	contribute to a false impression of system of interest	promoting pursuit of wrong problems and wrong	solutions (Mitroff, 1998). Specifically, Taylor and	Felten (1993) suggested that having a wrong	boundary ensures that a system cannot be divided into	any meaningful portions to enable rigorous	examinations of a system involving goals,	interactions, and input/outputs. The inability to define,	recognize, and purposefully (re)define a system	boundary are characteristic of this pathology
Bowler, 1981				Troncale, 1977																	
- providing a line of	demarcation to	distinguish system from	environment	- a boundary is essential	to properly define	system goals															
Pathology of	system boundary																				

Pathology of system environment - is concerned	with understanding the relationship between system	and its environment. A complement to pathology of	boundary, this involves a failure to understand a line	of demarcation distinguishing environment from	system. Laszlo's (1996) research suggests that	environment includes things that are outside the	control of the system. In many cases, such things can	influence the system but are not influenced by the	system (Krippendorff, 1986; Weinberg, 1975). This	concept is supported by Skyttner (2005) who notes	that the "environment can exert a degree of control	over the system but cannot be controlled by the	system" (p. 63). Umpleby et al. (1990) elaborates on	this concept by suggesting that the environment	includes those things beyond influence of the	decision-maker and is commonly known as the	'world.' In terms of pathology, treating an issue under	control of a system as if it were outside the control of	the system is a concern for system environment. In	this case, a system could be overwhelmed issues that	it must attempt to influence
Krippendorff, 1986		Laszlo, 1996			Umpleby,	Heylighen, and Hu,	1990														
- surrounding things	influencing the system	- typically these are things	that are outside the	control of the system	- things beyond the	influence of the	decision-maker	- sometimes referred to as	the world												
Pathology of	system	environment																			

APPENDIX C: GUIDELINES FOR THE OUTSIDE EXPERT

Background. The researcher is conducting an inductive research study intended to develop systems theory-based pathologies informing problem formulation phase using concepts of systems theory. In contemporary systems research, systems theory-based pathology is defined as *the inadequate use of systems theory in problem formulation*. *expressed as either the lack of application, misapplication, or disregard of laws*. *principles, and theorems of systems theory* (Katina, 2015a; 2015b). This notion of pathology is supported by Keating and Katina (2012) who suggested that pathology includes "circumstance, condition, factor, or pattern that acts to limit system performance, or lessen system viability, such that the likelihood of a system achieving performance expectations is reduced" (p. 253).

An integral part of this inductive research is to develop survey questions that will be used to 'face' validate the inductively developed pathologies. Specifically, the survey will be used to assess 1) the *degree of existence of pathology* and (2) the *degree of consequence of pathology*. Degree of existence of pathology is defined as the degree to which a particular pathology exists in an organization. A seven-point standard convention scale of *strongly disagree*, *disagree*, *disagree somewhat*, *undecided*. *agree somewhat*, *agree*, and *strongly agree* will be used to indicate both; the degree of existence of pathologies and the degree of consequence of pathologies. You have been identified as meeting the criteria to act as a qualified outside expert reviewer for participation in the research. Table 52 indicates the qualifications of

an outside expert.

Qualification	Criteria
Education	Earned doctorate in complex systems, engineering management, systems engineering, systems of systems engineering, or engaged in a doctoral level program in one of these areas.
Experience	Experienced in the field of systems, well-read researcher, author, or speaker with commercial or government systems engineering and systems-based methodologies.

Table 53: Outside Expert Qualifications

Requested Action. In order to enhance both content validity of the research design as well as the scope and depth of the survey design, the researcher requests your review of systems theory-based pathologies, listed in the following table, considering the focus area of the study, provide your input on the nature questions that could be developed for use in an operational setting. Specifically, pathologies as listed in the following table are in *systems theory* language. This language might not be suitable in a practitioner setting. The researcher needs to develop corresponding sets of statement(s) for practitioners before running a survey. Should you not be familiar with these concepts, please send the researcher an email to obtain an electronic copy.

Method of Response. Please make your comments and/or additions directly into the table below and email your completed response to the researcher.

#	Descriptions of pathology	Expert Reviewer's
		Comment
1.	Pathology of complementarity - a situation in which an	
	organization ignores other perspectives/models that are not	
	entirely compatible with the established-predominate	
	perspectives including missions, goals and objectives. An	
	organization in this case mistakenly assumes that there is	
	only one 'right' perspective (Bohr, 1928; Mehra, 1987).	
	Thus, different truths contained in different perspectives	
	are shunned. Murdoch and Murdoch (1989) suggest that	
	this pathology is more likely related to a management style	
	that assumes that the organization operates under 'ideal'	
	conditions. Moreover, too many perspectives, especially	
	the ones not being made explicit and understood, could	
	cause "mass confusion" (Clemson, 1984, p. 207) in an	
	organization. This pathology is expected in an operation	
	landscape characterized as ambiguous, complex,	
	interdependent, and uncertain	

Table 54: A Partial Table Used in Capturing Expert Feedback

References

Katina, P. F. (2015a). Emerging systems theory-based pathologies for governance of complex systems. *International Journal of System of Systems Engineering*, Vol. 6, Nos. 1/2, pp. 144–159.

and the second second

- Katina, P. F. (2015b). Systems theory as a foundation for discovery of pathologies for complex system problem formulation. In A. J. Masys (Ed.), From problem framing to problem solving: Applications of systems thinking and soft operations research in managing complexity (in press). Geneva, Switzerland: Geneva, Switzerland: Springer International Publishing.
- Keating, C. B., & Katina, P. F. (2012). Prevalence of pathologies in systems of systems. International Journal of System of Systems Engineering, Vol. 3, Nos. 3/4, pp. 243– 267.

APPENDIX D: PATHOLOGIES STATEMENTS FOR ASSESSMENT

The theory (construct) development phase of this research used grounded theory to develop a construct of metasystem pathologies identification for problem formulation by considering systems theory. The design that was undertaken is provided and the results are provided in Chapter V. These results include 83 systems theory-based pathologies that act to limit performance of complex systems. With respect to problem formulation as addressed in Chapter II, identification of these pathologies lies within the purview of problem formulation.

The validity of the theory is maintained within the different phases of Grounded Theory Method. However, utility of the theory could be illustrated in terms of ability to move from the theoretical lens to the operational setting. Specifically, the researcher thought to show utility of results of theory development in an operational setting. The initial outlook was that one could simply ask if such pathologies are present in a given organization. However, it was discovered that the language used in connection with pathologies is not common and might not easily be understood by a practitioner. In light of this issue, 88 simplified statements were developed from the 83 pathologies for use in survey assessment tool while still maintaining the original meaning of pathologies. These pathologies statements are listed in this appendix and were targeted towards capturing participant perspective on agreement/disagreement to existence/consequences of pathologies.

The Pathology of	Survey Statement
Complementarity	(SYSTEM OF INTEREST) does not encourage consideration of
comprendentarity	multiple perspectives
Diminishing	In efforts to increase productivity, (SYSTEM OF INTEREST)
returns	frequently expends resources in excess of the gains realized
Requisite	There are not adequate procedures at appropriate levels to
hierarchy	maintain (SYSTEM OF INTEREST) performance
Requisite	(SYSTEM OF INTEREST) does not have sufficient knowledge
knowledge	of (SYSTEM OF INTEREST) to effectively respond to
Ŭ	externally driven changes
Requisite	(SYSTEM OF INTEREST) assigned work responsibilities are
parsimony	beyond what we can be reasonably expected to manage
Requisite	(SYSTEM OF INTEREST) priorities are not well defined or
saliency	frequently shift
Requisite variety	(SYSTEM OF INTEREST) lacks sufficient capacity to absorb
	environmental flux without degrading our performance
Adaptation	We have difficulty adapting to circumstances generated external
	to (SYSTEM OF INTEREST)
Autonomy	(SYSTEM OF INTEREST) lacks sufficient independence for
	making decisions and taking action
Balance of	Combined under #65, Viability
tensions	
Basins of	For (SYSTEM OF INTEREST), results from new initiatives
stability	frequently fall short of intentions
Buffering	In (SYSTEM OF INTEREST) there are not enough reserve
	resources to accommodate unexpected shifts in work demands
Circular	(SYSTEM OF INTEREST) tends to oversimplify complex
Causality	Interretationships
Consequent	our intended purpose for (STSTEM OF INTEREST) does not match what we actually achieve in execution
Cubarnatic	(SVSTEM OF INTEREST) external relations do not provide
stability	adequate stability in the midst of turbulence
Darkness in a	(SYSTEM OF INTEREST) behaves as if we have complete
situation	understanding of our operations when in fact we don't
Dialecticism 1	We are not effective in detecting errors in (SYSTEM OF
	INTEREST)
Dialecticism 2	We are not effective in correcting detected errors in (SYSTEM
	OF INTEREST)
	The Pathology ofComplementarityDiminishingreturnsRequisitehierarchyRequisiteknowledgeRequisiteparsimonyRequisitesaliencyRequisite varietyAdaptationAutonomyBalance oftensionsBasins ofstabilityBufferingCircularcausalityConsequentproductionCyberneticstabilityDarkness in asituationDialecticism 1

Table 55: Pathology Survey Statements

Table 55 (cont.)

18	Emergence	(SYSTEM OF INTEREST) does not act effectively when
	-	situations emerge in ways we can't predict
19	Environmental-	(SYSTEM OF INTEREST) reacts to changes in the external
	modification	environment rather than proactively attempt to change the
		environment
20	Equifinality	(SYSTEM OF INTEREST) subscribes to the idea that there is
		usually one best way to proceed
21	Equivocation	Communications within (SYSTEM OF INTEREST) are
		frequently misinterpreted
22	Eudemony	(SYSTEM OF INTEREST) overemphasizes financial
	0	considerations often creating an imbalance with other important
		considerations
23	Events of low	(SYSTEM OF INTEREST) has difficulty in differentiating
	probability	among competing priorities
24	Feedback 1	For (SYSTEM OF INTEREST), feedback from the external
		environment is not effectively incorporated to maintain stability
25	Feedback 2	In (SYSTEM OF INTEREST) small deviations frequently
		escalate into more serious issues
26	Flatness	In (SYSTEM OF INTEREST) excess administrative emphasis
		negatively impacts productivity
27	Frame of	(SYSTEM OF INTEREST) lacks sufficient overlap in
	reference	perspectives to provide consistent interpretations
28	Hierarchy	The levels of hierarchy are not appropriate for (SYSTEM OF
		INTEREST) to function effectively
29	High-flux	Adequate resources are not provided in a timely manner to
		address (SYSTEM OF INTEREST) failures
30	Holism	(SYSTEM OF INTEREST) tends to focus more on the details
		of parts rather than the bigger picture of the whole.
31	Homeorhesis	(SYSTEM OF INTEREST) has difficulty maintaining course
		after experiencing a disturbance
32	Homeostasis	We do not actively monitor essential variables of (SYSTEM OF
		INTEREST) to ensure performance remains constant
33	Internal	The level of formalization is excessive in (SYSTEM OF
	elaboration	INTEREST)
34	Iteration	(SYSTEM OF INTEREST) is ineffective in iterating decisions
		and actions to produce better results
35	Least effort	(SYSTEM OF INTEREST) frequently expends more energy or
		resources than necessary to address issues

Table 55 (cont.)

36	Maximum power	(SYSTEM OF INTEREST) does not adjust well to demands for
		increased capacity
37	Minimal critical	(SYSTEM OF INTEREST) is overly prescriptive in defining
	specification	how things must be done
38	Multifinality	(SYSTEM OF INTEREST) suffers by assuming that successful
		past approaches will be equally successful for new issues
39	Omnivory	(SYSTEM OF INTEREST) lacks flexibility to accommodate
		utilization of different resource types
40	Organizational	(SYSTEM OF INTEREST)'s identity lacks sufficient clarity to
	closure	provide continuity in the midst of change.
41	Over-	Specialization within (SYSTEM OF INTEREST) limits the
	specialization	ability to respond to opportunities that cut across multiple
	-	specialties
42	Pareto	We do not adequately distinguish between different factors
		contributing to (SYSTEM OF INTEREST) performance
43	Patchiness	Limited diversity in sources of (SYSTEM OF INTEREST)
		resources creates vulnerability to shifts in resource availability
44	Polystability	(SYSTEM OF INTEREST) has difficulty maintaining stability
		when its subunits are in continual flux
45	Redundancy of	(SYSTEM OF INTEREST) decision and action is overly
	potential	constrained by higher level entities
	command	
46	Redundancy of	(SYSTEM OF INTEREST) lacks sufficiently redundant
	resources	resources to effectively respond to unforeseen
		opportunities/threats
47	Relaxation time	Frequency of changes does not permit (SYSTEM OF
ļ		INTEREST) to operate in stability
48	Resilience	(SYSTEM OF INTEREST) has difficulty returning to previous
		levels of execution following disturbances
49	Robustness	(SYSTEM OF INTEREST) can only absorb a limited range of
		external disturbances without the need for modification
50	Safe environment	(SYSTEM OF INTEREST) is not proactive in attempting to
		stabilize environmental flux
51	Satisficing	(SYSTEM OF INTEREST) seeks to identify the best possible
	~ 1.	solution to an issue rather than one that is satisfactory
52	Self-organization	(SYSTEM OF INTEREST) lacks sufficient flexibility
		concerning how to accomplish work

Table 55 (cont.)

53	Separatibility	Very small disturbances or changes by one (SYSTEM OF
		INTEREST) individual or entity can quickly escalate into major
		issues
54	Steady state	(SYSTEM OF INTEREST) does not sufficiently focus on the
		member entities
55	Sub-optimization	Even though individual entities in (SYSTEM OF INTEREST)
	1	are performing well, (SYSTEM OF INTEREST) performance
		as a whole is lacking.
56	Sub-optimization	Even though (SYSTEM OF INTEREST) as a whole is
	2	performing well, performance of individual entities is lacking
57	Subsidiarity	Local level (SYSTEM OF INTEREST) issues frequently
	-	escalate to a higher level for resolution
58	System context	(SYSTEM OF INTEREST) issues are frequently simplified by
		avoiding the wider context in which they are embedded
59	First cybernetic	(SYSTEM OF INTEREST) lacks an adequate baseline against
	control	which performance can be assessed
60	Red Queen	(SYSTEM OF INTEREST)'s rate of development is not
		sufficient to keep up with other related organizations.
61	Second	Communications within (SYSTEM OF INTEREST) are not
ł	cybernetic	sufficient to enable desired levels of performance
	control	
62	Third cybernetic	Changes are introduced in (SYSTEM OF INTEREST) even though
ļ	control	performance expectations are being met
63	Transcendence	In (SYSTEM OF INTEREST) we <u>do not</u> accept the premise that
		there are issues that lie beyond our capacity to understand
64	Ultra-stability	New or novel (SYSTEM OF INTEREST) disturbances that are
		unfamiliar present a particularly difficult challenge to our
		existing structure
65	Undifferentiated	(SYSTEM OF INTEREST) prefers to view issues from an
	coding	Objective versus subjective perspective
66	Unity	(SYSTEM OF INTEREST) lacks a clear purpose that serves to
	¥ 7* ¥ *¥*, ¥	Internally unify and externally distinguish the organization
6/	Viability I	(SYSTEM OF INTEREST) does not balance change and
	¥71 X 111, A	Stability well
68	Viability 2	(SYSTEM OF INTEREST) does not nave a good balance
		between the interests of the whole organization and those of
60	Vialilia, 2	(SVSTEM OF INITEDEST) does not have an appropriate
09	viaduity 5	(SISIENIOF INTERESI) does not nave an appropriate
1		j barance between au noc design and purposetul design

70	Gödel's	The current (SYSTEM OF INTEREST) frame of reference is
	incompleteness	not adequate to address the problems that must be confronted
71	Information	(SYSTEM OF INTEREST) information exchange does not
	redundancy	effectively assure that the right information is transmitted
72	Morphogenesis	Frequent structural changes in (SYSTEM OF INTEREST)
:		result in instabilities
73	Morphostasis	(SYSTEM OF INTEREST) resists change in favor of
	-	maintaining the status quo
74	Pareto optimality	(SYSTEM OF INTEREST) undertakes initiatives without
1		adequate consideration for their potential impact on other
1		initiatives or entities
75	Purposive	With respect to fulfilling the (SYSTEM OF INTEREST)
	behaviorism	purpose, achievement falls short of intentions
76	Recursiveness 1	(SYSTEM OF INTEREST) lacks a clear understanding of the
		larger organization in which it is embedded
77	Recursiveness 2	(SYSTEM OF INTEREST) lacks a clear understanding of the
		entities that comprise (SYSTEM OF INTEREST)
78	Reification	(SYSTEM OF INTEREST) has difficulty moving abstract ideas
		into concrete plans and actions
79	Channel capacity	(SYSTEM OF INTEREST) communications lack effectiveness
		in providing relevant information in a timely manner
8 0	Genesis of	For (SYSTEM OF INTEREST), information flows are not
	structure	effectively adjusted to compensate for organizational changes
81	Synchronicity	(SYSTEM OF INTEREST) has a hard time dealing with
-		problems that cannot be objectively analyzed for cause and
		effect
82	Communication	(SYSTEM OF INTEREST) communications frequently result in
82	Control	(SVSTEM OF INTEREST) lacks effective constraints
03	Comroi	(STSTENIOF INTEREST) lacks effective constraints
81	Dunamia	(SVSTEM OF INTEREST) does not affectively balance its
04	aquilibrium	interactions with the external environment to maintain
	σημαιοτιμπ	nerformance
85	Punctuated	(SYSTEM OF INTEREST) work moves from periods of
05	oguilihrium	relative calm to periods of crisis without knowing when the shift
	cyunion ium	will occur
	1	Will Occui

Table 55 (cont.)

86	Sociotechnicality	(SYSTEM OF INTEREST) tends to focus more on the technical aspects of problems to the exclusion of the social aspects
87	System boundary	(SYSTEM OF INTEREST) has difficulty establishing boundaries that clearly delineate (SYSTEM OF INTEREST), its work and its problems from those that are external
88	System environment	The critical aspects of the external environment that influence (SYSTEM OF INTEREST) are not well understood

APPENDIX E: THE RAW RESULTS OF ASSEMENT IN THE UNIT OF ANALYSIS

In Appendix D, the survey statements that are used in the survey tool are presented. In this Appendix, the raw data associated with the results of the survey tool for assessing the level of participant's agreement with 'existence' of the pathologies statement and their 'consequence' are presented. In all, 111 participants responded to the survey instrument. The first raw of the table represents the 49 different grids corresponding to the X (i.e., existence) and Y (i.e., consequence) plot. For example, [SD, E] is one grid. It represents the intersection of {Strongly Disagree} for 'existence' and {Extreme} for 'consequence' of pathologies as described in Chapters IV and V. The columns are labeled 1 through 88 and there numbers directly correspond to the 88 different survey statements for pathologies as indicated in Appendix D. The numbers in different grids represent the number of participants who selected a specific grid. For example, eight participants noted that they 'Disagree' with the statement for pathology statement, which is labeled as 1 and corresponds to: SYSTEM OF INTEREST) does not encourage consideration of multiple perspectives. The same eight participants note that consequences associated the pathology under evaluation could be 'Very High.'
0	-	-	c	0	-	-	-	0	-	-			-	0	0	0	0	C	0	-	0
0	0	0	-	0	0	0	0	-	0	0	0	0	c	0	0	-	0		-	0	0
c	0	0	0	0	c	0	_	c	0	0	0	0	0	c	0	0	_	c	0	-	0
7	2		_	-	_	2	_	-		-		-	-	_		_	-	ς.	5	-	2
-	0	0		0	0	-	-		0	_	-	0	0	0	0	0	0	0	-	0	0
	0	0		~	- -	-	-	0			-	0	0	c	0	0	0	0	0	0	0
-			-	- 	_		_	_	_			2		~	~	~					
~		0		~	_	<u> </u>			<u> </u>				-			-			[
_	<u> </u>	0	0	0	<u> </u>		0	<u> </u>		0	0	0	0	0	0	0	0	0		_	
0	0	0	0	0	с —	0	0	5	°	0	0	0	0	0	0	•	0	0	-	<u> </u>	0
0	0	0	0	0	•	0	0	•	c	0	0	0	-	0	0	0	0	0	0	°	0
0	0	0	-	0	0	0	-	-	0	0	c	0	0	-	0	-	0	c	-	0	0
0	I	0	0	0	-	0	0	С	0	-	-	-	0	-	0	0	0	c	0	0	-
5	-	2	3	2	-	ŝ	б	-	5	3	3	1	-	2	2	5	4	0	ĸ.	3	ŝ
0	_	0	0	2	0	0	-	-	0	0	-	0	0	-	5	-	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	-	0	0
0	0	-	0	0	0		0		0	0	-	-	¢	0	0	0	0	0		0	0
5	3	0	1	0	_	ŝ	_	2	0	0	0	_	_		_	_	0	5	3	5	5
0	0	0	0	0	0	5	_	0	2	_		-	5		0	0	0	0	_	0	2
- 	+	4		s	_	~	Y,	~	~	~	4	5	2	_	3	5	4	s	5	4	s.
	. 5	- -				5	~	3	5	5	5	•	9		2	3	4	-	4	5	S
	-	0					0	- -		0		_			-	c	0	0	2	0	0
)))		<u> </u>	-		_	Ľ_				-	_	_	-	
	0					5)	<u> </u>)		<u> </u>	[-)	~				<u> </u>
5	2	2	-	C	5	ر	5	0	-	<u>, v</u>	17	~	-	~		-				_	
~	~	9	~	4	∞	5	5	~	Ś	4	S	0	-	-	2	4	2	ŝ	-	4	2
- 4	- 9	6	- %		4		- ~	~ ~	- ∞	- 4	— <i>v</i>		- c	- 5	- ~	6		- ~	5 5 6	17	~ ~
ε	ε Γ	-	m	10	2	5	s.	\$	4	4	-	4	4	m	4	<u>s</u>	<u>~</u>	2	Ŷ	m	<u> </u>
3	ŝ	2	5	\$	3	-	5	0	7	4	~	5	4	m	4	2	7	2	-	0	0
5	7	0	7	0	0	-	0	0	0	0	-	5	0	0	-	0	0	-	—	-	-
-	-	-	0	C	4	0	-	3	5	0	0	c		0	-	-	~	7	0	-	ŝ
5	×	S	5	S	8	×	7	- 4	4	9	7	4	6	×	7	ŝ	8	7	4	9	4
ŝ	∞	- 4	- ~	∞	6	9	7	×	6	- ~	- 0	~	∞	- ~		7			7		∞
-	4	0	ŝ		_	4	-	0	-	0	5	0	5	0	5	-	4	m	m	0	2
7	-	~	m	2	0	2	S	9	m	Ŷ	-	S	4	5	7	7	2	4	-	ŝ	~
ŝ	4	Ś	7	4	-	4	7	ŝ	2	ŝ	v,	ç	5	9	S	s.	4	3	9	2	n
7	4	-	-	~	n	7	ŝ	0	C	0	Y,	ŝ	-	7	ŝ	9		m	9	-	-
3	m	S	-	0	Ŷ	7	7	4	m	m	4	4	r	9	-	5	-	S	2	0	m
7	2	×	2	4	- 5	8	- 7	- 0	- 0	- ~	×	7		- ~	Y)	S	×		9	×	S
-	m	4	\$	m	m	ε	-	-	ŝ	7	ŝ	-	-	-	5	9	5	-		ñ	4
7	_		-		m	0	_	0	2	0	2	2	5	-	2		_	c		_	~
र	0	m		9	0	5		0	0	~		0		7		_		0	2	0	0
•			~	→ ∞	-	+	+	-	-	~	5	5	-	4	80	- ~	9			S	2
~						Ľ	~	_				2			<u> </u>			<u> </u>			<u> </u>
m	(m)	ļ	a ,		(a.)		<u> </u>	-		[¹			[]	4		4	Ē		-v ²		
ŝ	~	- ~	- 0	\$	- ~	6	r 	%		- 0	9	9	4	4	9	s S	4		<u> </u>		~
7	17	4	~ ~	0	4	0	5	S	0	17	5	0	°	°	-		-	ļ~	- -	2	-
2	<u> </u>		0	0	-	0	0	-	°	-	-	-	°	-	0	2	-	2	0	0	
0		0	-	0	0	0	0	0	-	0	0	-	°	0	0	°	-	°	0	0	°
-	-	-	ŝ	0	0	0	-	0		0	0	0	-	-	5	0	0	0	0	0	0
7	0	12	0	2	0	-	0	-	0	0	7	-	0	-	ŝ	-	0	0	0	-	°
m	m		ŝ	5	-	-	5	4	5	2	m	4	S	4	6	9	ŝ	-	7		1
		••••	•		_																

		····-				,				,,		r		-			r	r	T	·····	· · · ·		
0	-	0	0	C	0	-	-	1	0	C	0	I	-	C	0	-	0	C	C	0	-	0	-
-	0	-		0	C	C	C	0	0	-	-	0	0	-	-	0	-		0	0	0	0	0
0	0	0	0	-	-	0	0	0	0	0	0	-	0	c	0	0	0	c	0	0	0	-	0
<u> </u>	5	~	_	_	6	2	5	~	2	2	m		_	2	7	m	2	-		ŝ	_	-	ŝ
	-					-					_	_			_							(
Ľ	9		9	<u> </u>	<u> </u>		<u> </u>	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	• •	-	<u> </u>	<u> </u>		-	-	-	-
•	с —	-	с 	-	°	<u> </u>	с —	0	0	0	0	с —	с —	0	0	<u> </u>	L		°	°	9	0	0
-	-	С	-	-	0	-	-	5	ŝ	-	-	m	2	0		0	0		-	-	2	0	0
0	0	0	0	0	0	0	0	0	0	C	0	0	0	C	0	C	0	0	0	C	C	0	0
0	0	0	0	0	-	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	-	c	0	0	0	2	0	c		c	0	_	-	0	0	_	0	0	0
<u> </u>	-							<u> </u>					_	<u> </u>								_	_
Ľ		<u> </u>	<u> </u>	ļ	<u> </u>	ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>		Ŭ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
<u> </u>	0	0	C	0	0	0	0	с —	0	-	0	-	C	0	-	C	°	0	0	с —	с —	0	~
m	5	ŝ	-	-	S	2	-	m	Ŷ	5	-	m	4	C	4	4	Ŷ	2	ŝ	S	5	0	ŝ
0	-	0	-	0	-	0	C	-	2	0	0	0		-	0	0	-	0	C	~	-	0	C
C	0	0	C	0	0	0	0	c	0	0	0	0	0	С	c	-	0	0	0	0	0	0	0
0		0	c	-	0	0	0	e	-	e	0	0	0	0	0	0	0	0	-	0	-	-	-
-	5	4	5	4	9	0	~	0	2	s	-	4	3	4	2	5	0	4	4	m	ŝ	ŝ	5
-	c	0	-	2	2	0	6	0	0			-	0	-	0	0	0	5	<u> </u>	-	4	7	
 	5	9	6	4	9	∞	lu.	2	3	4	- ~	\$	s	- ~	~	- 0	2	9	<u>∞</u>	4	s.	~	~
<u> </u>		4	2	4	~	5	6	-	4	m	~	4	9	5	~	~	9	5	5	4	ŝ	5	_
-	1	-			<u> </u>	<u> </u>					-	-	<u> </u>		<u> </u>				<u> </u>	<u> </u>			
	<u> </u>		<u> </u>		<u> </u>	↓──	<u> </u>		<u> </u>		<u> </u>			-					<u> </u>		<u> </u>	<u> </u>	
°	-	0	<u> </u>		~	<u> </u>	<u> -</u>	0	0	0		0	0	0	-	-	-	°	<u>е</u>	<u>ہ</u>	~	-	<u> </u>
-	-	-	5	0	-	0	-	-	5	-	2	-	2	°	2	m	~		~	2	°	°	0
4	m	9	9	~	ŝ	-	3	4	-	ô	-	0	4	4	4	4	2	m	S	∞	4	6	5
- ¢	- ∞	- 2	- ~	- 3	3	- ~	1 7	- 4	- 7		- ~,	- ~	- ~	- ∞	2 5	- ∞	- ~		- ~	- 0	(v v	- ~	- ~
m	m	2	0	7	9		7	5	2	4	6	4	4	-	4	-	6	6	3	2	0	-	S
~	s	m	-	-	-	m	m	ŝ	Ś	Ś	~	Ś	S	4	5	m	m	m	m	4	m	5	2
<u> </u>	0	0	0	5	121	17	<u> </u>		m	~	<u> _</u>	4	0		-	-	<u> _</u>	0	0	2	0	2	-
_	c	2	_		<u> </u>	~	5	_	-	2	-	s	~	m	~	-	0	<u>†</u>	1	-	2	-	
						~	<u> </u>		~	~		1 0	~	<u></u>	~	1 0	-	10	2	5	<u> </u>	5	<u>~</u>
				<u> </u>		ļ	-			<u> </u>	ļ										<u> </u>		
¢,		- 4,		F	<u> </u>	- 4	ļ	~	~	4		-	Ĕ	Ĩ.	Ĩ		1	~		ļ			
-	4	m	0	<u> </u>	<u> </u>	ļ	<u> </u>	~	°	<u>°</u>	~	~	—	<u> </u>	-	4	-		<u> </u>	<u> -</u>			
4	~	9	4	~	°	4	0	4	2	5	5	<u>~</u>	4	~	s –		<u> </u>	4	12	10	4	°	l v
S	\$	2	-	4	S	s.	4	3	5	m	5	4	9	m	S	s.	4	~	9	<u>°</u>	4		4
ŝ	2	5	-	-	7	17	-	m		0	5		-	-	0	-	7	-	0	m	~	<u> </u>	-
	-	-	2	-	2	m	×	m	m	-	5	4	×	9	S	-	0	0	-	-	9	∞ _	~
- 0		2	6	2	4	~	2	9	٩	- 0	9	- ~	9	Ś	2	S.	9	2	9	9	4	- 5	6
4	~	~	5	-	2	4	4	2	7	m	-	1-	~	2	2	17	m	7	9	0	2	0	2
0	-	2	0		17	-	0	-	5	0		0	5			0	-	2	0	0	-	~	0
<u> </u>		-				6	<u> </u>	<u> </u>			~	_	<u> </u>	~	<u> </u>		<u> </u>	6		6	-	<u> _</u>	<u> </u>
<u> </u>			-	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>			Ĕ-			<u> </u>	<u> </u>	<u> </u>	<u> </u>		
ů,	Ľ	<u>~</u>	2	v ,	ļ	T	ľ,	۲Ľ–	l <u>a</u> ,	Ľ	4	4	L.,	Ľ—	7		<u> </u>	F	ļ.,	↓	<u> </u>	 	<u> </u>
2	-	2	2	0	-	5	m	-	<u> </u>	m	-	0	~	-	17	4	17	7	2	-	-		-
4	3	9	₩ 4	∞	0	<u> </u>	7	6	5	∞	2	S	2	6	7	∞	S	9	m	4	~	- 4	2
-	5	0	m	-	-	-	7	0	0	-	0	C	-	2	-	7	-	_	0	-	-	-	0
0	c	0	0	0	0	C	0	0	0	-	0	-	e		0	0	0	0	-	0	0	-	5
0	0	c	c	0	0		0	0	0	0	-	0	0	0	0	0	0	0	0	C	c	0	0
c	-	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	-
0	0	-	0	c	0		-		t	0	0	0		0		0	-	7	-	0	0	0	0
4	-	-	<u> </u>	~	m	0	-	~	2	-	s	s	2	5	17	2	2	7	4	7	7	2	m
		-									1	1		1				1	1	1	1	1	1

	0		0	0	0		c	_	-		0	0	0	c	0	_	0	0	0	0	0	0	0
<u> </u>																_	-	0	0	0	C	0	0
Ĕ_	-				-	-							-	-	<u> </u>		<u> </u>	-					
F	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	Ŭ			
	~ ~	~	<u> </u>							<u> </u>	~	<u> </u>	-	-	4	~			_	-	_		-
<u>с</u>	с —	0	с —	0	-	0	<u> </u>	с —	0	<u> </u>	<u> </u>		0	<u>с</u>	0	с ——	с	0	0	0	0	-	0
-	°	0	0	0	0	°	°	2	0	<u>с</u>	0	с —	0	0	-	°	0	C	-	5	-	0	0
0	4	с —	-	0	0			Ϋ́	5	-	0	5		-	-	-	-	-	3	m	0	2	-
0	0	C	0	0	0	0	0	0	0	0	0	0	0	c	C	-	0	0	0	0	0	0	0
C	C	0	0	-	C	C	-	0	0	C	0	7	0	0	0	-	0	-	0	0	0	-	0
C	-	-	-	0	0	0	0	0	0	0	0	0	0	-	-	0	-	0	-	0	0	0	0
0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	-	¢	0	m	0	0	0	0	2
c		0	0	c	c	0	0	0	0	2	0	0	0	0	c	0	C	0	0	0	0	0	0
4	2	m	7	m	m	5	5	m	s.	4	4	-	2	2	v,	0	5	-	S		2	~	4
6	0	0	0	_	0	0	0	-	7	0	0	0	0		c	0	c	0		0	0	0	_
-	0	0	0	_	0		6	0	0	0	0	0	0	0		7	0		0	0	0	0	0
-	2	0	0	~	0	0	<u> </u>	0	0	5	0	0			0	3	0			0		0	-
	2	2					+	~	6	~	2	_	_	2	4	-	5	5			5	4	ŝ
<u> </u>	_	~	2	_	0	<u> </u>	2	0	0	m	5	0	5	0	0		_	6		<u> </u>	5	4	
	\$	2	a	4		~	6	2	5	+	2	~	+	+	-	<u> </u>	4	<u>~</u>	4	9	5	9	3
		~		+	~	5	5	5	~	in.			_			~	- -	2	v.	v.	~		2
Ļ			_			<u> </u>				<u> </u>	<u> </u>		C	-			-					0	0
Ē		-		0			_	-	~	<u> </u>			- -					-			-		-
E-	_			-	~						1					+	<u> </u>	5	<u> </u>	~		~	~
							-	~	-					~							<u> </u>		
	- 0		4						- K	4,	³						<u>, ,</u>				- ~	a 0	2 10
	-	0	_	5	<u> </u>		+		_			-	~	2		5	~				5	~	~
				-			-					<u> </u>									~		
<u> </u>	<u> </u>			-								-											
<u> </u>			-		Ľ	<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>			<u> </u>	-	<u> </u>		-		
<u> </u>	-	-	-	~		-	-	-	-		<u> </u>	4	~		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	-		
÷	-		~	- 0	× -		<u> </u>		<u> </u>	<u>م</u>			4 / 										
- 0	м -	<u> </u>	<u>a</u>	6	<u> </u>		<u> </u>	- 0	-	- 0	æ		- 0	<u>к</u> ,		v ,	- 7		5			4	v ,
<u> </u>			ļ		<u> </u>	<u> </u>	ļ		<u> </u>		<u> </u>		~	<u> </u>				<u> </u>			~		-
<u> </u>	ъ С		4	5	7	2	-	œ		-	5	0	~ _	м) 	-	<u> </u>	<u> </u>	<u> </u>	m 	~		<u> </u>	
<u> </u>	v.	4	œ	<u> </u>	4	æ	w.	m			7	9	-	<u> </u>	<u> </u>	~		-	- 0	- 0		0	
E	[^m	—		<u> </u>	<u> </u>		<u> </u>			╞───	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>				4
2	0	<u>^</u>	4	4	r	N .		2	14	 	[ļ		<u>~</u>	101	m 1 m	<u>۳</u>	1 7	17	<u>س</u>	ļ	<u> </u>	4
2		°	2	6	4	<u>ه</u>	<u>۳</u>	~	4	4	4	<u> </u>	<u> </u>	r	<u>ا</u>	×	<u>ه</u>	ļ	ļ	<u> </u>	- ~	<u> </u>	4
5	-	4	3		~	0	°	m	-	-	m	m	2	m	m	-	ļ	<u>س</u>		m	0	7	3
-	-	-	-	-	-	-	 			-	°	-	7	-	2	0	-	5	7	-	5	0	7
2	7	0	m	5	-	0	0	7	2	0		0	0	2	-	m	-	-	-		-	0	0
<u>[</u> ~	2	2	m	2	3	7	4	m	9	-	S	S	2	n	4	S	4	2	5	-	2	m	m
4	-	m	2	-	~	5	7	2	~	0	0	2	2	0	C	0		0	0	0	-	5	
9	7	S	4	17	S	×	m	4	0	m	m	s	- 0	- ~	2	5	2	-	m	S	s	4	s
5	m	-	0		C		0	0	0		0	-	-	-	2	v,	0	0	-	-	C	0	0
C	c	c	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	-	-	-	-	0
0	0	c	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	-	0	0	-	7	0
0	С	0	0	0	0	5	0	0	0	0	0	-	7	0	0	0	0	0	0	0	0	5	-
0	С	c	-		2	0	0	0	0	0	-	0	0	-	0	0	0	0	0	0	0	0	0
~	4	-	4	0	m	0	m	4	4	2	7	~	~	3	7	~	2	m	Ś	m	m	2	4
			L	L	1			L	l	lasar ar	L	l		1	1	1	1	1		1			1

	_	_	_					-			_		<u> </u>	+	-	-	-
<u> م</u>	°	<u> </u>	°	°		0	0	0	0	0	0	0	0	0	0	<u> </u>	0
0	0	0	C	0	0	0	-	C	0	0	0	0	0	0	-	0	0
C	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	C	C
-			-	-	-	-	-	-	-	-	-		-	-	2	-	-
0	0	0	0	0	0	0	0	-	0	1	0	0	0	0	-	-	0
0	0	0	-	0	-	-	0	0	0	_	0	0	0			0	0
	_	~	5	_	4	2	_	-	2	1	2			0	m.	7	
			_		((<u> </u>
	<u> </u>				0		0)		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>
0		0	0	0	0	0	0	0	0	0	°	-	0	с ——	~	°	-
0	-	0	0	0	c	-	-	0	0	0	0	0	0	0	0	0	2
0	0	-	0	0	0	0	0	0	1	0	-	-	0	C	C	C	C
e	-	C	0	-	0	0	0	7	0	0	5	-	0	0	-	-	С
3	-	~	2	4	4	3	5	4	3		4	4	2	2	9	m	2
6	_	0	_		0	_	0	0	_	0	0	_	0	0	0	0	0
				((<u> </u>	_							
								-		~	<u> </u>				-	-	-
<u> </u>		_)	~		<u> </u>	-								_	<u> </u>
<u> </u>	<u>~</u>	<u> </u>		-	5	-	2	17	2	4	4	-	<u> </u>		-		<u> </u>
5	5	_	2	-	0	c	0	-	0	~	2	0	0	2	~	2	-
v.	Ŷ	S	-	4	Ś	7	3	4	-	9	ŝ	¢	7	Ś	m	4	5
-	4	~	-	4	2	4	7	7	Ś	4	5	5	5	2	-	ŝ	-
0	0	0	0	0	1	0	-	0	0	0	-	0	0	0	0	0	-
0	0	1	0	0	0	0	0	-	0	-	0	0	0	-	C	0	c
s	-	-	-		0	-	0		0	0	-	—	-	-	5	0	0
2	4	3	6	4	4	3	ŝ	4	×	~	4	4	~	-	4	-	4
- 5	- 0	3	- 0	5 -	- 4	- 4	4 -	- 7	~ -	7	- 4	0 10	75	- 0	<u>∩</u> 4	0.4	0 0
2	4	4	3	-	3	4	5	0	4	5	2	4	4	9	e	S	S
3	6	\$	2	9	5	3	3	4	4	~	5	\$	5	4	2	4	m
-	0	0	3	0	3	7	+	_	2	_	0	0	0	0	0	_	2
-	_	5			-	0	_	~	2	-	5	~	_		0		1
5	+	3	+	6	9	~	1		<u>~</u>	~	+	2	2	~	+	<u> </u>	5
	-			-	-		` 			~	<u> </u>	-				-	
5			- 4,			-			<u> </u>		<u>.</u>	.	7			<u> </u>	- 1
	-	~	7	~			~			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	4	Ę
Ś	4	4	4	5	4	1	ŝ	~	m	5	<u>۳</u>	~	<u>م</u>	4	<u>~</u>	<u>م</u>	<u></u>
4	5	1 2	9	9	6	S	6	m	4	m	<u>~</u>	m	×	2	2	s.	v.
-	0	-	3			2	0	0	0	2	-	~	m	7	0	L	°
5	Ś	3	3	5	2	ŝ	ŝ	7	2	m	2	7	5	9	0	S	5
×	- ~	6	7	- 0	4	ŝ	- 2	m	S		2	7	6	- m	4	2	- 0
2	c	5	4	5	ñ	ŝ	7	m	S	4	v.	m	2	2	2	-	
0	0	5	-	-	0	0		5	0	-	5	-	5	0		17	2
-	_	2	5		0		0	0		-	5		_	-	~	-	1
~		_	4	2	5	œ	5	2	<u> </u>	4	5	4	~		5	4	17
	~					~			~					_	~	<u> </u>	
(N			• •	, , , , , , , , , , , , , , , , , , ,						<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>
\$	~	4	9	\$ 		~		°	<u> </u>	4		4		5	4	14	[^m ,
-	-	5	-	-	-	-	-	<u></u>	~			<u> </u>	 	4	<u> </u>		<u>ا</u> ر
	0	0	-	C	0	7	-	-	0	-	0	<u>°</u>	0		~	<u> </u>	17
2	0	0	0	0	-	-	0	0	-	¢	0	0	0	0	0	0	-
0	-		0	-	7	7	0	0	0	0	0	0		C	0	0	0
-	-	0	-	0	0	0	0	0	-	C	0	-	-	0	0	0	C
ŝ	ŝ	4	S	5	4	m	~	S	2	3	3	~	m	-	7	1	m

APPENDIX F: AN EXAMPLE OF APPLICATION OF SYSTEMS THEORY-BASED PATHOLOGIES

This research makes several significant contributions and implications to the systems body of knowledge in support of problem formulation phase of systems-based methodologies. The construct, *Metasystem Pathologies Identification* and the *systems theory-based pathologies* also provide a substantive help for those involved in analysis of complex systems. This utility comes in the form of the means in which the developed construct can be used in endeavors related to any problem formulation activity.

For example, those interested in Systems of Systems Engineering (SOSE) as a methodology to intervene in systems of systems problem landscape could be involved in application of National Centers for System of Systems Engineering approach (Adams & Keating, 2009; 2011; Keating et al., 2004). This approach provides a high-level analytical structure for "rigorous engineering analysis that invests heavily in the understanding and framing of the problem under study" (Adams & Keating, 2011, p. 113) through which understanding of complex systems is possible. Typically, seven stages are involved in this methodology (1) framing the system under study, (2) designing the unique methodology, (3) designing the SoSE team, (4) SoSE exploration and analysis, (5) transforming the analysis into action, (6) reporting the results of SoSE study, and (7) assessing the impact of the SoSE study (Adams & Keating, 2009; 2011; Keating et al., 2004). Obviously, this methodology recognizes the importance of problem formulation.

During the problem formulation phase of this methodology, a total of nine primary elements (i.e., situation-wide context, characterization of system, nature of system, justification for system complexity, framing, problem statement and objectives. stakeholder analysis, contextual analysis, and implication of study) with 23 executable elements are involved to "expose problems under study and produce actionable results" (Adams & Meyers, 2011, p. 164). Each of the nine elements are associated with a set of goals, input, outputs, methods, techniques, and tools that enable holistic understanding of a complex satiation. However, this process can be supplemented by current research on systems theory-based pathologies. MPI provides a set of systems theory-based pathologies that could be evaluated in terms of existence and consequence on the system of interest.

Given that system theory-based pathologies act to limit expected performance, and could therefore hinder viability, it is critical that they are identified during 'Perspective I' phase of SOSE methodology. With the MPI in hand, the SoSE team could develop a simple template to evaluate each of the 83 pathologies based on a set of agreed upon measures for evaluation (e.g., impact of the systems theory-based pathologies, susceptibility of the organization to the systems theory-based pathologies). This type of assessment provides a different view of issues that could affect a complex system. These issues could then supplement, for requirements, identified using during a traditional approach of 'needs analysis' (Smith, 2011). Moreover, since there is a greater emphasis on the subjectivity in SOSE methodology, the SoSE team, during pathologies assessment is afforded the opportunity to capture divergence perspectives in the SoSE team. At the core of problem formulation in this research is the assumption that dealing with systems requires evaluation of human participants, in this case the SoSE team, including their interests, values, and assumptions (Adams & Keating, 2011; Jackson, 2003; Mason & Mitroff, 1981; Ulrich, 1987). As each member of the team provides his or her input in the assessment, divergence in the perspectives of the SoSE team is revealed and then discussed as part of attempt to understand pathologies. Pathologies can then be ranked and prioritized as the SoSE team sees fit.

This is only one example of how this large number of systems theory-based pathologies could be used in a problem formulation activity. Since these pathologies are not restricted to a particular industry, anyone facing interested in assessing their system (i.e., organization) is provided with invaluable means to systemically evaluate issues affecting performance from a systems theory perspective.

VITA

Polinpapilinho F. Katina Department of Engineering Management and Systems Engineering, Old Dominion University, 2101 Engineering Systems Bldg. Norfolk, VA 23529 <u>pkati001@odu.edu</u>

EDUCATION

Ph.D. Engineering Management and Systems Engineering, August 2015 Old Dominion University, Norfolk, VA, USA Advisor: Dr. Charles B. Keating
M.E. Systems Engineering, May 2011 Old Dominion University, Norfolk, VA, USA
B.S. Engineering Technology, May 2009 Old Dominion University, Norfolk, VA, USA

PROFESSIONAL EXPERIENCE

Assistant to Editor-in-Chief, 2012 - Present Int. J. of Critical Infrastructures and Int. J. of System of Systems Engineering, Inderscience Enterprises Limited, Geneva, Switzerland Graduate Teaching/Research Assistant, 2011 - 2015 Department of Engineering Management and Systems Engineering, Old Dominion University, Norfolk, VA

SCHOLARLY PRODUCTIVITY

- Katina, P.F. (2015). "Emerging systems theory-based pathologies for governance of complex systems," In *International Journal of System of Systems Engineering*, Vol. 6, Nos. ¹/₂, pp. 114-159
- Keating, C.B., Katina, P.F., and Bradley, J.M. (2014). "Complex system governance: concept, challenges, and emerging research," In *International Journal of System of Systems Engineering*, 5(3), pp. 263-288
- Gheorghe, A.V., Masera, M., and **Katina, P.F.** (Eds.). (2014). *Infranomics: Sustainability. engineering design and governance. 24.* Geneva, Switzerland: Springer International Publishing
- Katina, P.F., Pinto, C.A., Bradley, J.M., and Hester, P.T. (2014). "Interdependencyinduced risk with application to healthcare," In *International Journal of Critical Infrastructure Protection*, 7(1), pp. 12-26
- Keating, C.B. and Katina, P.F. (2011). "Systems of systems engineering: Prospects and challenges for the emerging field," in *International Journal of System of Systems Engineering*, 2(2/3), pp. 234-256